10分钟快速搞定pandas

摘要:
本文是对pandas官方网站上《10Minutestopandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook。

本文是对pandas官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook 。习惯上,我们会按下面格式引入所需要的包:

In [1]: importnumpy as np
In [2]: importpandas as pd
In [3]: import matplotlib.pyplot as plt

一、创建对象

可以通过Data Structure Intro Setion来查看有关该节内容的详细信息。

1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:

In [4]: s = pd.Series([1, 3, 5, np.nan, 6, 8])
In [5]: s
Out[5]: 
0    1.0
1    3.0
2    5.0
3NaN
4    6.0
5    8.0
dtype: float64

2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:

In [6]: dates = pd.date_range('20130101', periods=6)
In [7]: dates
Out[7]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')
In [8]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
In [9]: df
Out[9]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:

In [10]: df2 = pd.DataFrame({'A': 1.,
   ...:                     'B': pd.Timestamp('20130102'),
   ...:                     'C': pd.Series(1, index=list(range(4)), dtype='float32'),
   ...:                     'D': np.array([3] * 4, dtype='int32'),
   ...:                     'E': pd.Categorical(["test", "train", "test", "train"]),
   ...:                     'F': 'foo'})
   ...: 
In [11]: df2
Out[11]: 
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3test  foo
1  1.0 2013-01-02  1.0  3train  foo
2  1.0 2013-01-02  1.0  3test  foo
3  1.0 2013-01-02  1.0  3  train  foo

4、查看不同列的数据类型:

In [12]: df2.dtypes
Out[12]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object

5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:

In [13]: df2.<TAB>  #noqa: E225, E999
df2.A                  df2.bool
df2.abs                df2.boxplot
df2.add                df2.C
df2.add_prefix         df2.clip
df2.add_suffix         df2.clip_lower
df2.align              df2.clip_upper
df2.all                df2.columns
df2.any                df2.combine
df2.append             df2.combine_first
df2.apply              df2.compound
df2.applymap           df2.consolidate
df2.D

二、查看数据

详情请参阅:Basics Section

1、查看frame中头部和尾部的行:

In [14]: df.head()
Out[14]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
In [15]: df.tail(3)
Out[15]: 
                   A         B         C         D
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

2、显示索引、列和底层的numpy数据:

In [16]: df.index
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')
In [17]: df.columns
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

显示列表数据:

In [17]: df.values
Out[17]: 
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
       [ 1.2121, -0.1732,  0.1192, -1.0442],
       [-0.8618, -2.1046, -0.4949,  1.0718],
       [ 0.7216, -0.7068, -1.0396,  0.2719],
       [-0.425 ,  0.567 ,  0.2762, -1.0874],
       [-0.6737,  0.1136, -1.4784,  0.525 ]])

3、describe()函数对于数据的快速统计汇总:

In [19]: df.describe()
Out[19]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.073711 -0.431125 -0.687758 -0.233103
std    0.843157  0.922818  0.779887  0.973118
min   -0.861849 -2.104569 -1.509059 -1.135632
25%   -0.611510 -0.600794 -1.368714 -1.076610
50%    0.022070 -0.228039 -0.767252 -0.386188
75%    0.658444  0.041933 -0.034326  0.461706
max    1.212112  0.567020  0.276232  1.071804

4、对数据的转置:

In [20]: df.T
Out[20]: 
   2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

5、按轴进行排序

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]: 
                   D         C         B         A
2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
2013-01-02 -1.044236  0.119209 -0.173215  1.212112
2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
2013-01-04  0.271860 -1.039575 -0.706771  0.721555
2013-01-05 -1.087401  0.276232  0.567020 -0.424972
2013-01-06  0.524988 -1.478427  0.113648 -0.673690

6、按值进行排序

In [22]: df.sort_values(by='B')
Out[22]: 
                   A         B         C         D
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

三、选择

虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式:.at,.iat,.loc,.iloc和.ix详情请参阅Indexing and Selecing DataMultiIndex / Advanced Indexing

3.1、获取

1、选择一个单独的列,这将会返回一个Series,等同于df.A:

In [23]: df['A']
Out[23]: 
2013-01-01    0.469112
2013-01-02    1.212112
2013-01-03   -0.861849
2013-01-04    0.721555
2013-01-05   -0.424972
2013-01-06   -0.673690
Freq: D, Name: A, dtype: float64

2、通过[]进行选择,这将会对行进行切片

In [24]: df[0:3]
Out[24]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
In [25]: df['20130102':'20130104']
Out[25]: 
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

3.2 通过标签选择

1、使用标签来获取一个交叉的区域

In [26]: df.loc[dates[0]]
Out[26]: 
A    0.469112
B   -0.282863
C   -1.509059
D   -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

2、通过标签来在多个轴上进行选择

In [27]: df.loc[:, ['A', 'B']]
Out[27]: 
                   A         B
2013-01-01  0.469112 -0.282863
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020
2013-01-06 -0.673690  0.113648

3、标签切片

In [28]: df.loc['20130102':'20130104', ['A', 'B']]
Out[28]: 
                   A         B
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771

4、对于返回的对象进行维度缩减

In [29]: df.loc['20130102', ['A', 'B']]
Out[29]: 
A    1.212112
B   -0.173215
Name: 2013-01-02 00:00:00, dtype: float64

5、获取一个标量

In [30]: df.loc[dates[0], 'A']
Out[30]: 0.46911229990718628

6、快速访问一个标量(与上一个方法等价)

In [31]: df.at[dates[0], 'A']
Out[31]: 0.46911229990718628

四、通过位置选择

详细请参见Selection by Position.

1、通过传递数值进行位置选择(选择的是行)

In [32]: df.iloc[3]
Out[32]: 
A    0.721555
B   -0.706771
C   -1.039575
D    0.271860
Name: 2013-01-04 00:00:00, dtype: float64

2、通过数值进行切片,与numpy/python中的情况类似

In [33]: df.iloc[3:5, 0:2]
Out[33]: 
                   A         B
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020

3、通过指定一个位置的列表,与numpy/python中的情况类似

In [34]: df.iloc[[1, 2, 4], [0, 2]]
Out[34]: 
                   A         C
2013-01-02  1.212112  0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972  0.276232

4、对行进行切片

In [35]: df.iloc[1:3, :]
Out[35]: 
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

5、对列进行切片

In [36]: df.iloc[:, 1:3]
Out[36]: 
                   B         C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215  0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05  0.567020  0.276232
2013-01-06  0.113648 -1.478427

6、获取特定的值

In [37]: df.iloc[1, 1]
Out[37]: -0.17321464905330858

与上面的方法一样

In [38]: df.iat[1, 1]
Out[38]: -0.17321464905330858

五、布尔索引

1、使用一个单独列的值来选择数据:

In [39]: df[df.A >0]
Out[39]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2、 使用where操作来选择数据,从满足布尔条件的数据中选择值:

In [40]: df[df >0]
Out[40]: 
                   A         B         C         D
2013-01-01  0.469112NaN       NaN       NaN
2013-01-02  1.212112       NaN  0.119209NaN
2013-01-03       NaN       NaN       NaN  1.071804
2013-01-04  0.721555       NaN       NaN  0.271860
2013-01-05       NaN  0.567020  0.276232NaN
2013-01-06       NaN  0.113648       NaN  0.524988

3、使用isin()方法来过滤:

In [41]: df2 =df.copy()
In [42]: df2['E'] = ['one', 'one', 'two', 'three', 'four', 'three']
In [43]: df2
Out[43]: 
                   A         B         C         D      E
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632one
2013-01-02  1.212112 -0.173215  0.119209 -1.044236one
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804two
2013-01-04  0.721555 -0.706771 -1.039575  0.271860three
2013-01-05 -0.424972  0.567020  0.276232 -1.087401four
2013-01-06 -0.673690  0.113648 -1.478427  0.524988three
In [44]: df2[df2['E'].isin(['two', 'four'])]
Out[44]: 
                   A         B         C         D     E
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804two
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

六、设置

1、设置一个新的列:

In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range('20130102', periods=6))
In [46]: s1
Out[46]: 
2013-01-02    1
2013-01-03    2
2013-01-04    3
2013-01-05    4
2013-01-06    5
2013-01-07    6
Freq: D, dtype: int64
In [47]: df['F'] = s1

2、通过标签设置新的值:

In [48]: df.at[dates[0], 'A'] = 0

3、通过位置设置新的值:

In [49]: df.iat[0, 1] = 0

4、通过一个numpy数组设置一组新值:

In [50]: df.loc[:, 'D'] = np.array([5] * len(df))

上述操作结果如下:

In [51]: df
Out[51]: 
                   A         B         C  D    F
2013-01-01  0.000000  0.000000 -1.509059  5NaN
2013-01-02  1.212112 -0.173215  0.119209  5  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0
2013-01-05 -0.424972  0.567020  0.276232  5  4.0
2013-01-06 -0.673690  0.113648 -1.478427  5  5.0

5、通过where操作来设置新的值:

In [52]: df2 =df.copy()
In [53]: df2[df2 > 0] = -df2
In [54]: df2
Out[54]: 
                   A         B         C  D    F
2013-01-01  0.000000  0.000000 -1.509059 -5NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

七、缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section

1、reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
In [56]: df1.loc[dates[0]:dates[1], 'E'] = 1
In [57]: df1
Out[57]: 
                   A         B         C  D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0NaN
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN

2、去掉包含缺失值的行:

In [58]: df1.dropna(how='any')
Out[58]: 
                   A         B         C  D    F    E
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

3、对缺失值进行填充:

In [59]: df1.fillna(value=5)
Out[59]: 
                   A         B         C  D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5  5.0  1.0
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  5.0
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  5.0

4、对数据进行布尔填充:

In [60]: pd.isna(df1)
Out[60]: 
                A      B      C      D      F      E
2013-01-01False  False  False  False   True  False
2013-01-02False  False  False  False  False  False
2013-01-03False  False  False  False  False   True
2013-01-04  False  False  False  False  False   True

八、相关操作

详情请参与Basic Section On Binary Ops

8.1 统计

相关操作通常情况下不包括缺失值

1、执行描述性统计:

In [61]: df.mean()
Out[61]: 
A   -0.004474
B   -0.383981
C   -0.687758
D    5.000000
F    3.000000
dtype: float64

2、在其他轴上进行相同的操作:

In [62]: df.mean(1)
Out[62]: 
2013-01-01    0.872735
2013-01-02    1.431621
2013-01-03    0.707731
2013-01-04    1.395042
2013-01-05    1.883656
2013-01-06    1.592306
Freq: D, dtype: float64

3、对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:

In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)
In [64]: s
Out[64]: 
2013-01-01NaN
2013-01-02NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06NaN
Freq: D, dtype: float64
In [65]: df.sub(s, axis='index')
Out[65]: 
                   A         B         C    D    F
2013-01-01NaN       NaN       NaN  NaN  NaN
2013-01-02NaN       NaN       NaN  NaN  NaN
2013-01-03 -1.861849 -3.104569 -1.494929  4.0  1.0
2013-01-04 -2.278445 -3.706771 -4.039575  2.0  0.0
2013-01-05 -5.424972 -4.432980 -4.723768  0.0 -1.0
2013-01-06       NaN       NaN       NaN  NaN  NaN

8.2 Apply

1、对数据应用函数:

cumsum为对每一列的数据进行累计加和

In [66]: df.apply(np.cumsum)
Out[66]: 
                   A         B         C   D     F
2013-01-01  0.000000  0.000000 -1.509059   5NaN
2013-01-02  1.212112 -0.173215 -1.389850  10   1.0
2013-01-03  0.350263 -2.277784 -1.884779  15   3.0
2013-01-04  1.071818 -2.984555 -2.924354  20   6.0
2013-01-05  0.646846 -2.417535 -2.648122  25  10.0
2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0
In [67]: df.apply(lambda x: x.max() -x.min())
Out[67]: 
A    2.073961
B    2.671590
C    1.785291
D    0.000000
F    4.000000
dtype: float64

8.3直方图

具体请参照:Histogramming and Discretization

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
In [69]: s
Out[69]: 
0    4
1    2
2    1
3    2
4    6
5    4
6    4
7    6
8    4
9    4
dtype: int64
In [70]: s.value_counts()
Out[70]: 
4    5
6    2
2    2
1    1
dtype: int64

8.4 字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [72]: s.str.lower()
Out[72]: 
0       a
1b
2c
3aaba
4baca
5NaN
6caba
7dog
8cat
dtype: object

9、合并

Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section

9.1 Concat

将不同的df合并,需要列数是一样的

In [73]: df = pd.DataFrame(np.random.randn(10, 4))
In [74]: df
Out[74]: 
          0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495
#break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]
In [76]: pd.concat(pieces)
Out[76]: 
          0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495

9.2 Join

Join类似于SQL类型的join,具体请参阅:Database style joining

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
In [79]: left
Out[79]: 
   key  lval
0  foo     1
1  foo     2
In [80]: right
Out[80]: 
   key  rval
0  foo     4
1  foo     5
In [81]: pd.merge(left, right, on='key')
Out[81]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

9.3 Append

将一行连接到一个DataFrame上,具体请参阅Appending

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A', 'B', 'C', 'D'])
In [88]: df
Out[88]: 
          A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758
In [89]: s = df.iloc[3]
In [90]: df.append(s, ignore_index=True)
Out[90]: 
          A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758
8  1.453749  1.208843 -0.080952 -0.264610

10、分组

对于"group by"操作,我们通常是指以下一个或多个操作步骤:
l (Splitting)按照一些规则将数据分为不同的组;
l (Applying)对于每组数据分别执行一个函数;
l (Combining)将结果组合到一个数据结构中;
详情请参阅:Grouping section

In [91]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
   ....:                          'foo', 'bar', 'foo', 'foo'],
   ....:                    'B': ['one', 'one', 'two', 'three',
   ....:                          'two', 'two', 'one', 'three'],
   ....:                    'C': np.random.randn(8),
   ....:                    'D': np.random.randn(8)})
   ....: 
In [92]: df
Out[92]: 
     A      B         C         D
0  foo    one -1.202872 -0.055224
1  bar    one -1.814470  2.395985
2  foo    two  1.018601  1.552825
3  bar  three -0.595447  0.166599
4  foo    two  1.395433  0.047609
5  bar    two -0.392670 -0.136473
6  foo    one  0.007207 -0.561757
7  foo  three  1.928123 -1.623033

1、分组并对每个分组执行sum函数:

In [93]: df.groupby('A').sum()
Out[93]: 
            C        D
A                     
bar -2.802588  2.42611
foo  3.146492 -0.63958

2、通过多个列进行分组形成一个层次索引,然后执行函数:

In [94]: df.groupby(['A', 'B']).sum()
Out[94]: 
                  C         D
A   B                        
bar one   -1.814470  2.395985
    three -0.595447  0.166599
    two   -0.392670 -0.136473
foo one   -1.195665 -0.616981
    three  1.928123 -1.623033
    two    2.414034  1.600434

11、Reshaping

详情请参阅Hierarchical IndexingReshaping

11.1 Stack

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
   ....:                      'foo', 'foo', 'qux', 'qux'],
   ....:                     ['one', 'two', 'one', 'two',
   ....:                      'one', 'two', 'one', 'two']]))
   ....: 
In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
In [98]: df2 = df[:4]
In [99]: df2
Out[99]: 
                     A         B
first second                    
bar   one     0.029399 -0.542108
      two     0.282696 -0.087302
baz   one    -1.575170  1.771208
      two     0.816482  1.100230

stack()方法“压缩”数据帧列中的一个级别。

In [100]: stacked =df2.stack()
In [101]: stacked
Out[101]: 
first  second   
bar    one     A    0.029399
               B   -0.542108
       two     A    0.282696
               B   -0.087302
baz    one     A   -1.575170
               B    1.771208
       two     A    0.816482
               B    1.100230
dtype: float64

11.2 透视表

详情请参阅:Pivot Tables.

In [105]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,
   .....:                    'B': ['A', 'B', 'C'] * 4,
   .....:                    'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
   .....:                    'D': np.random.randn(12),
   .....:                    'E': np.random.randn(12)})
   .....: 
In [106]: df
Out[106]: 
        A  B    C         D         E
0     one  A  foo  1.418757 -0.179666
1     one  B  foo -1.879024  1.291836
2     two  C  foo  0.536826 -0.009614
3   three  A  bar  1.006160  0.392149
4     one  B  bar -0.029716  0.264599
5     one  C  bar -1.146178 -0.057409
6     two  A  foo  0.100900 -1.425638
7   three  B  foo -1.035018  1.024098
8     one  C  foo  0.314665 -0.106062
9     one  A  bar -0.773723  1.824375
10    two  B  bar -1.170653  0.595974
11  three  C  bar  0.648740  1.167115

可以从这个数据中轻松的生成数据透视表:

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]: 
C             bar       foo
A     B                    
one   A -0.773723  1.418757
      B -0.029716 -1.879024
      C -1.146178  0.314665
three A  1.006160NaN
      B       NaN -1.035018
      C  0.648740NaN
two   A       NaN  0.100900
      B -1.170653NaN
      C       NaN  0.536826

12、时间序列

Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section

In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
In [110]: ts.resample('5Min').sum()
Out[110]: 
2012-01-01    25083
Freq: 5T, dtype: int64

1、时区表示:

In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
In [112]: ts =pd.Series(np.random.randn(len(rng)), rng)
In [113]: ts
Out[113]: 
2012-03-06    0.464000
2012-03-07    0.227371
2012-03-08   -0.496922
2012-03-09    0.306389
2012-03-10   -2.290613
Freq: D, dtype: float64
In [114]: ts_utc = ts.tz_localize('UTC')
In [115]: ts_utc
Out[115]: 
2012-03-06 00:00:00+00:00    0.464000
2012-03-07 00:00:00+00:00    0.227371
2012-03-08 00:00:00+00:00   -0.496922
2012-03-09 00:00:00+00:00    0.306389
2012-03-10 00:00:00+00:00   -2.290613
Freq: D, dtype: float64

2、时区转换:

In [116]: ts_utc.tz_convert('US/Eastern')
Out[116]: 
2012-03-05 19:00:00-05:00    0.464000
2012-03-06 19:00:00-05:00    0.227371
2012-03-07 19:00:00-05:00   -0.496922
2012-03-08 19:00:00-05:00    0.306389
2012-03-09 19:00:00-05:00   -2.290613
Freq: D, dtype: float64

3、时间跨度转换:

In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [119]: ts
Out[119]: 
2012-01-31   -1.134623
2012-02-29   -1.561819
2012-03-31   -0.260838
2012-04-30    0.281957
2012-05-31    1.523962
Freq: M, dtype: float64
In [120]: ps =ts.to_period()
In [121]: ps
Out[121]: 
2012-01   -1.134623
2012-02   -1.561819
2012-03   -0.260838
2012-04    0.281957
2012-05    1.523962
Freq: M, dtype: float64
In [122]: ps.to_timestamp()
Out[122]: 
2012-01-01   -1.134623
2012-02-01   -1.561819
2012-03-01   -0.260838
2012-04-01    0.281957
2012-05-01    1.523962
Freq: MS, dtype: float64

4、时期和时间戳之间的转换使得可以使用一些方便的算术函数。

In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
In [124]: ts =pd.Series(np.random.randn(len(prng)), prng)
In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
In [126]: ts.head()
Out[126]: 
1990-03-01 09:00   -0.902937
1990-06-01 09:00    0.068159
1990-09-01 09:00   -0.057873
1990-12-01 09:00   -0.368204
1991-03-01 09:00   -1.144073
Freq: H, dtype: float64

13、Categoricals

从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细介绍参看:categorical introductionAPI documentation

1、将原始的grade转换为Categorical数据类型:

In [127]: df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6],
   .....:                    "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})
   .....: 
In [128]: df["grade"] = df["raw_grade"].astype("category")
In [129]: df["grade"]
Out[129]: 
0    a
1b
2b
3a
4a
5e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

2、将Categorical类型数据重命名为更有意义的名称:

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

3、对类别进行重新排序,增加缺失的类别:

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium",
   .....:                                               "good", "very good"])
   .....: 
In [132]: df["grade"]
Out[132]: 
0    very good
1good
2good
3very good
4very good
5very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

4、排序是按照Categorical的顺序进行的而不是按照字典顺序进行:

In [133]: df.sort_values(by="grade")
Out[133]: 
   id raw_grade      grade
5   6e   very bad
1   2b       good
2   3b       good
0   1a  very good
3   4a  very good
4   5         a  very good

5、对Categorical列进行排序时存在空的类别:

In [134]: df.groupby("grade").size()
Out[134]: 
grade
very bad     1
bad          0
medium       0
good         2
very good    3
dtype: int64

14、画图

具体文档参看:Plottingdocs

In [135]: ts = pd.Series(np.random.randn(1000),
   .....:                index=pd.date_range('1/1/2000', periods=1000))
   .....: 
In [136]: ts =ts.cumsum()
In [137]: ts.plot()
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7a2fc08240>

10分钟快速搞定pandas第1张

对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:

In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
   .....:                   columns=['A', 'B', 'C', 'D'])
   .....: 
In [139]: df =df.cumsum()
In [140]: plt.figure()
Out[140]: <Figure size 640x480 with 0 Axes>
In [141]: df.plot()
Out[141]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7a2bf762b0>
In [142]: plt.legend(loc='best')
Out[142]: <matplotlib.legend.Legend at 0x7f7a2beac748>

10分钟快速搞定pandas第2张

15、数据输入输出

15.1 csv

参考:Writing to a csv file

1、写入csv文件:

In [143]: df.to_csv('foo.csv')

2、从csv文件中读取:

In [144]: pd.read_csv('foo.csv')
Out[144]: 
     Unnamed: 0          A          B         C          D
0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
3    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
4    2000-01-05   0.578117   0.511371  0.103552  -2.428202
5    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
6    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
..          ...        ...        ...       ...        ...
993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
[1000 rows x 5 columns]

15.2 HDF5

1、写入HDF5存储:

In [145]: df.to_hdf('foo.h5', 'df')

2、从HDF5存储中读取:

In [146]: pd.read_hdf('foo.h5', 'df')
Out[146]: 
                    A          B         C          D
2000-01-01   0.266457  -0.399641 -0.219582   1.186860
2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2000-01-03  -1.734933   0.530468  2.060811  -0.515536
2000-01-04  -1.555121   1.452620  0.239859  -1.156896
2000-01-05   0.578117   0.511371  0.103552  -2.428202
2000-01-06   0.478344   0.449933 -0.741620  -1.962409
2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
...               ...        ...       ...        ...
2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
[1000 rows x 4 columns]

15.3 Excel

1、写入excel文件:

In [147]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

2、从excel文件中读取:

In [148]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[148]: 
    Unnamed: 0          A          B         C          D
0   2000-01-01   0.266457  -0.399641 -0.219582   1.186860
1   2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2   2000-01-03  -1.734933   0.530468  2.060811  -0.515536
3   2000-01-04  -1.555121   1.452620  0.239859  -1.156896
4   2000-01-05   0.578117   0.511371  0.103552  -2.428202
5   2000-01-06   0.478344   0.449933 -0.741620  -1.962409
6   2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
..         ...        ...        ...       ...        ...
993 2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
994 2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
995 2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
996 2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
997 2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
998 2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
[1000 rows x 5 columns]

参考:

1、十分钟搞定pandas

2、10 Minutes to pandas

免责声明:文章转载自《10分钟快速搞定pandas》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇mongodb的TTL索引介绍(超时索引)【华为云技术分享】鲲鹏弹性云服务器GCC交叉编译环境搭建指南下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

用matplotlib和pandas绘制股票MACD指标图,并验证化交易策略

我的新书《基于股票大数据分析的Python入门实战》于近日上架,在这篇博文向大家介绍我的新书:《基于股票大数据分析的Python入门实战》里,介绍了这本书的内容。这里将摘录出部分内容,用以推广本书,请大家多多支持。 1 MACD指标的计算方式 从数学角度来分析,MACD指标是根据均线的构造原理,对股票收盘价进行平滑处理,计算出算术平均值以后再进行二次计算...

Python 命令行之旅:深入 click 之增强功能

作者:HelloGitHub-Prodesire HelloGitHub 的《讲解开源项目》系列,项目地址:https://github.com/HelloGitHub-Team/Article 一、前言 在前面三篇文章中,我们介绍了 click 中的参数、选项和命令,本文将介绍 click 锦上添花的功能,以帮助我们更加轻松地打造一个更加强大的命令行...

PCIe知识摘要记录

摘: 一、 在PCIe的Spec中,并没有特别详细的关于Root Complex的定义,从实际的角度来讲,可以把Root Complex理解为CPU与PCIe总线系统通信的媒介。Endpoint处于PCIe总线系统拓扑结构中的最末端,一般作为总线操作的发起者(initiator,类似于PCI总线中的主机)或者终结者(Completers,类似于PCI总线...

Vue和微信小程序区别

一、生命周期 先贴两张图: vue生命周期 小程序生命周期 相比之下,小程序的钩子函数要简单得多。 vue的钩子函数在跳转新页面时,钩子函数都会触发,但是小程序的钩子函数,页面不同的跳转方式,触发的钩子并不一样。 onLoad: 页面加载一个页面只会调用一次,可以在 onLoad 中获取打开当前页面所调用的 query 参数。 onShow: 页...

iOS7下Status Bar字体颜色修改

原文来自这里:iOS7下Status Bar字体颜色修改。 旧项目在iOS7上遇到status bar字体颜色需要修改的问题,症状如下:导航栏设置为黑色后,iphone上status bar的字体颜色会自动变成白色,但是在ipad上status bar的字体颜色还是黑色,这样就看不清楚了。 为了搞清原因,新建了一个Mater-Detail模版工程,观察了下...

php : 类常量

使用总结: 1.不能使用 define 来定义 2.通过 "类名::常量名" 来获取 /** * PHP类常量 * * 类常量属于类自身,不属于对象实例,不能通过对象实例访问 * 不能用public,protected,private,static修饰 * 子类可以重写父类中的常量,可以通过(parent::)来调用父类中的常量 *...