libffi

摘要:
Thisislibffi.info,由libffi.texi生产的bymakeinfo版本5.1。本手册适用于libffi,一个可移植的外国函数接口库。版权所有(C)200820102011redhat,股份有限公司。许可授予复制、分发

This is libffi.info, produced by makeinfo version 5.1 from libffi.texi.

This manual is for Libffi, a portable foreign-function interface
library.

Copyright (C) 2008, 2010, 2011 Red Hat, Inc.

 Permission is granted to copy, distribute and/or modify this
 document under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2, or (at
 your option) any later version.  A copy of the license is included
 in the section entitled "GNU General Public License".

INFO-DIR-SECTION Development
START-INFO-DIR-ENTRY

  • libffi: (libffi). Portable foreign-function interface library.
    END-INFO-DIR-ENTRY

File: libffi.info, Node: Top, Next: Introduction, Up: (dir)

libffi


This manual is for Libffi, a portable foreign-function interface
library.

Copyright (C) 2008, 2010, 2011 Red Hat, Inc.

 Permission is granted to copy, distribute and/or modify this
 document under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2, or (at
 your option) any later version.  A copy of the license is included
 in the section entitled "GNU General Public License".
  • Menu:

  • Introduction:: What is libffi?

  • Using libffi:: How to use libffi.

  • Missing Features:: Things libffi can't do.

  • Index:: Index.

File: libffi.info, Node: Introduction, Next: Using libffi, Prev: Top, Up: Top

1 What is libffi?


Compilers for high level languages generate code that follow certain
conventions. These conventions are necessary, in part, for separate
compilation to work. One such convention is the "calling convention".
The calling convention is a set of assumptions made by the compiler
about where function arguments will be found on entry to a function. A
calling convention also specifies where the return value for a function
is found. The calling convention is also sometimes called the "ABI" or
"Application Binary Interface".

Some programs may not know at the time of compilation what arguments
are to be passed to a function. For instance, an interpreter may be
told at run-time about the number and types of arguments used to call a
given function. 'Libffi' can be used in such programs to provide a
bridge from the interpreter program to compiled code.

The 'libffi' library provides a portable, high level programming
interface to various calling conventions. This allows a programmer to
call any function specified by a call interface description at run time.

FFI stands for Foreign Function Interface. A foreign function
interface is the popular name for the interface that allows code written
in one language to call code written in another language. The 'libffi'
library really only provides the lowest, machine dependent layer of a
fully featured foreign function interface. A layer must exist above
'libffi' that handles type conversions for values passed between the two
languages.

File: libffi.info, Node: Using libffi, Next: Missing Features, Prev: Introduction, Up: Top

2 Using libffi


  • Menu:

  • The Basics:: The basic libffi API.

  • Simple Example:: A simple example.

  • Types:: libffi type descriptions.

  • Multiple ABIs:: Different passing styles on one platform.

  • The Closure API:: Writing a generic function.

  • Closure Example:: A closure example.

File: libffi.info, Node: The Basics, Next: Simple Example, Up: Using libffi

2.1 The Basics

'Libffi' assumes that you have a pointer to the function you wish to
call and that you know the number and types of arguments to pass it, as
well as the return type of the function.

The first thing you must do is create an 'ffi_cif' object that
matches the signature of the function you wish to call. This is a
separate step because it is common to make multiple calls using a single
'ffi_cif'. The "cif" in 'ffi_cif' stands for Call InterFace. To
prepare a call interface object, use the function 'ffi_prep_cif'.

-- Function: ffi_status ffi_prep_cif (ffi_cif *CIF, ffi_abi ABI,
unsigned int NARGS, ffi_type *RTYPE, ffi_type **ARGTYPES)
This initializes CIF according to the given parameters.

 ABI is the ABI to use; normally 'FFI_DEFAULT_ABI' is what you want.
 *note Multiple ABIs:: for more information.

 NARGS is the number of arguments that this function accepts.

 RTYPE is a pointer to an 'ffi_type' structure that describes the
 return type of the function.  *Note Types::.

 ARGTYPES is a vector of 'ffi_type' pointers.  ARGTYPES must have
 NARGS elements.  If NARGS is 0, this argument is ignored.

 'ffi_prep_cif' returns a 'libffi' status code, of type
 'ffi_status'.  This will be either 'FFI_OK' if everything worked
 properly; 'FFI_BAD_TYPEDEF' if one of the 'ffi_type' objects is
 incorrect; or 'FFI_BAD_ABI' if the ABI parameter is invalid.

If the function being called is variadic (varargs) then
'ffi_prep_cif_var' must be used instead of 'ffi_prep_cif'.

-- Function: ffi_status ffi_prep_cif_var (ffi_cif *CIF, ffi_abi varabi,
unsigned int NFIXEDARGS, unsigned int varntotalargs, ffi_type
*RTYPE, ffi_type **ARGTYPES)
This initializes CIF according to the given parameters for a call
to a variadic function. In general it's operation is the same as
for 'ffi_prep_cif' except that:

 NFIXEDARGS is the number of fixed arguments, prior to any variadic
 arguments.  It must be greater than zero.

 NTOTALARGS the total number of arguments, including variadic and
 fixed arguments.

 Note that, different cif's must be prepped for calls to the same
 function when different numbers of arguments are passed.

 Also note that a call to 'ffi_prep_cif_var' with
 NFIXEDARGS=NOTOTALARGS is NOT equivalent to a call to
 'ffi_prep_cif'.

To call a function using an initialized 'ffi_cif', use the 'ffi_call'
function:

-- Function: void ffi_call (ffi_cif *CIF, void *FN, void *RVALUE, void
**AVALUES)
This calls the function FN according to the description given in
CIF. CIF must have already been prepared using 'ffi_prep_cif'.

 RVALUE is a pointer to a chunk of memory that will hold the result
 of the function call.  This must be large enough to hold the
 result, no smaller than the system register size (generally 32 or
 64 bits), and must be suitably aligned; it is the caller's
 responsibility to ensure this.  If CIF declares that the function
 returns 'void' (using 'ffi_type_void'), then RVALUE is ignored.

 AVALUES is a vector of 'void *' pointers that point to the memory
 locations holding the argument values for a call.  If CIF declares
 that the function has no arguments (i.e., NARGS was 0), then
 AVALUES is ignored.  Note that argument values may be modified by
 the callee (for instance, structs passed by value); the burden of
 copying pass-by-value arguments is placed on the caller.

File: libffi.info, Node: Simple Example, Next: Types, Prev: The Basics, Up: Using libffi

2.2 Simple Example

Here is a trivial example that calls 'puts' a few times.

 #include <stdio.h>
 #include <ffi.h>

 int main()
 {
   ffi_cif cif;
   ffi_type *args[1];
   void *values[1];
   char *s;
   ffi_arg rc;

   /* Initialize the argument info vectors */
   args[0] = &ffi_type_pointer;
   values[0] = &s;

   /* Initialize the cif */
   if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
 		       &ffi_type_sint, args) == FFI_OK)
     {
       s = "Hello World!";
       ffi_call(&cif, puts, &rc, values);
       /* rc now holds the result of the call to puts */

       /* values holds a pointer to the function's arg, so to
          call puts() again all we need to do is change the
          value of s */
       s = "This is cool!";
       ffi_call(&cif, puts, &rc, values);
     }

   return 0;
 }

File: libffi.info, Node: Types, Next: Multiple ABIs, Prev: Simple Example, Up: Using libffi

2.3 Types
  • Menu:

  • Primitive Types:: Built-in types.

  • Structures:: Structure types.

  • Type Example:: Structure type example.

  • Complex:: Complex types.

  • Complex Type Example:: Complex type example.

File: libffi.info, Node: Primitive Types, Next: Structures, Up: Types

2.3.1 Primitive Types

'Libffi' provides a number of built-in type descriptors that can be used
to describe argument and return types:

'ffi_type_void'
The type 'void'. This cannot be used for argument types, only for
return values.

'ffi_type_uint8'
An unsigned, 8-bit integer type.

'ffi_type_sint8'
A signed, 8-bit integer type.

'ffi_type_uint16'
An unsigned, 16-bit integer type.

'ffi_type_sint16'
A signed, 16-bit integer type.

'ffi_type_uint32'
An unsigned, 32-bit integer type.

'ffi_type_sint32'
A signed, 32-bit integer type.

'ffi_type_uint64'
An unsigned, 64-bit integer type.

'ffi_type_sint64'
A signed, 64-bit integer type.

'ffi_type_float'
The C 'float' type.

'ffi_type_double'
The C 'double' type.

'ffi_type_uchar'
The C 'unsigned char' type.

'ffi_type_schar'
The C 'signed char' type. (Note that there is not an exact
equivalent to the C 'char' type in 'libffi'; ordinarily you should
either use 'ffi_type_schar' or 'ffi_type_uchar' depending on
whether 'char' is signed.)

'ffi_type_ushort'
The C 'unsigned short' type.

'ffi_type_sshort'
The C 'short' type.

'ffi_type_uint'
The C 'unsigned int' type.

'ffi_type_sint'
The C 'int' type.

'ffi_type_ulong'
The C 'unsigned long' type.

'ffi_type_slong'
The C 'long' type.

'ffi_type_longdouble'
On platforms that have a C 'long double' type, this is defined. On
other platforms, it is not.

'ffi_type_pointer'
A generic 'void *' pointer. You should use this for all pointers,
regardless of their real type.

'ffi_type_complex_float'
The C '_Complex float' type.

'ffi_type_complex_double'
The C '_Complex double' type.

'ffi_type_complex_longdouble'
The C '_Complex long double' type. On platforms that have a C
'long double' type, this is defined. On other platforms, it is
not.

Each of these is of type 'ffi_type', so you must take the address
when passing to 'ffi_prep_cif'.

File: libffi.info, Node: Structures, Next: Type Example, Prev: Primitive Types, Up: Types

2.3.2 Structures

Although 'libffi' has no special support for unions or bit-fields, it is
perfectly happy passing structures back and forth. You must first
describe the structure to 'libffi' by creating a new 'ffi_type' object
for it.

-- Data type: ffi_type
The 'ffi_type' has the following members:
'size_t size'
This is set by 'libffi'; you should initialize it to zero.

 'unsigned short alignment'
      This is set by 'libffi'; you should initialize it to zero.

 'unsigned short type'
      For a structure, this should be set to 'FFI_TYPE_STRUCT'.

 'ffi_type **elements'
      This is a 'NULL'-terminated array of pointers to 'ffi_type'
      objects.  There is one element per field of the struct.

File: libffi.info, Node: Type Example, Next: Complex, Prev: Structures, Up: Types

2.3.3 Type Example

The following example initializes a 'ffi_type' object representing the
'tm' struct from Linux's 'time.h'.

Here is how the struct is defined:

 struct tm {
     int tm_sec;
     int tm_min;
     int tm_hour;
     int tm_mday;
     int tm_mon;
     int tm_year;
     int tm_wday;
     int tm_yday;
     int tm_isdst;
     /* Those are for future use. */
     long int __tm_gmtoff__;
     __const char *__tm_zone__;
 };

Here is the corresponding code to describe this struct to 'libffi':

     {
       ffi_type tm_type;
       ffi_type *tm_type_elements[12];
       int i;

       tm_type.size = tm_type.alignment = 0;
       tm_type.type = FFI_TYPE_STRUCT;
       tm_type.elements = &tm_type_elements;

       for (i = 0; i < 9; i++)
           tm_type_elements[i] = &ffi_type_sint;

       tm_type_elements[9] = &ffi_type_slong;
       tm_type_elements[10] = &ffi_type_pointer;
       tm_type_elements[11] = NULL;

       /* tm_type can now be used to represent tm argument types and
 	 return types for ffi_prep_cif() */
     }

File: libffi.info, Node: Complex, Next: Complex Type Example, Prev: Type Example, Up: Types

2.3.4 Complex Types

'libffi' supports the complex types defined by the C99 standard
('_Complex float', '_Complex double' and '_Complex long double' with the
built-in type descriptors 'ffi_type_complex_float',
'ffi_type_complex_double' and 'ffi_type_complex_longdouble'.

Custom complex types like '_Complex int' can also be used. An
'ffi_type' object has to be defined to describe the complex type to
'libffi'.

-- Data type: ffi_type
'size_t size'
This must be manually set to the size of the complex type.

 'unsigned short alignment'
      This must be manually set to the alignment of the complex
      type.

 'unsigned short type'
      For a complex type, this must be set to 'FFI_TYPE_COMPLEX'.

 'ffi_type **elements'

      This is a 'NULL'-terminated array of pointers to 'ffi_type'
      objects.  The first element is set to the 'ffi_type' of the
      complex's base type.  The second element must be set to
      'NULL'.

The section *note Complex Type Example:: shows a way to determine the
'size' and 'alignment' members in a platform independent way.

For platforms that have no complex support in 'libffi' yet, the
functions 'ffi_prep_cif' and 'ffi_prep_args' abort the program if they
encounter a complex type.

File: libffi.info, Node: Complex Type Example, Prev: Complex, Up: Types

2.3.5 Complex Type Example

This example demonstrates how to use complex types:

 #include <stdio.h>
 #include <ffi.h>
 #include <complex.h>

 void complex_fn(_Complex float cf,
                 _Complex double cd,
                 _Complex long double cld)
 {
   printf("cf=%f+%fi
cd=%f+%fi
cld=%f+%fi
",
          (float)creal (cf), (float)cimag (cf),
          (float)creal (cd), (float)cimag (cd),
          (float)creal (cld), (float)cimag (cld));
 }

 int main()
 {
   ffi_cif cif;
   ffi_type *args[3];
   void *values[3];
   _Complex float cf;
   _Complex double cd;
   _Complex long double cld;

   /* Initialize the argument info vectors */
   args[0] = &ffi_type_complex_float;
   args[1] = &ffi_type_complex_double;
   args[2] = &ffi_type_complex_longdouble;
   values[0] = &cf;
   values[1] = &cd;
   values[2] = &cld;

   /* Initialize the cif */
   if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 3,
                    &ffi_type_void, args) == FFI_OK)
     {
       cf = 1.0 + 20.0 * I;
       cd = 300.0 + 4000.0 * I;
       cld = 50000.0 + 600000.0 * I;
       /* Call the function */
       ffi_call(&cif, (void (*)(void))complex_fn, 0, values);
     }

   return 0;
 }

This is an example for defining a custom complex type descriptor for
compilers that support them:

 /*
  * This macro can be used to define new complex type descriptors
  * in a platform independent way.
  *
  * name: Name of the new descriptor is ffi_type_complex_<name>.
  * type: The C base type of the complex type.
  */
 #define FFI_COMPLEX_TYPEDEF(name, type, ffitype)             
   static ffi_type *ffi_elements_complex_##name [2] = {      
     (ffi_type *)(&ffitype), NULL                             
   };                                                        
   struct struct_align_complex_##name {                      
     char c;                                                  
     _Complex type x;                                         
   };                                                        
   ffi_type ffi_type_complex_##name = {                      
     sizeof(_Complex type),                                   
     offsetof(struct struct_align_complex_##name, x),         
     FFI_TYPE_COMPLEX,                                        
     (ffi_type **)ffi_elements_complex_##name                 
   }

 /* Define new complex type descriptors using the macro: */
 /* ffi_type_complex_sint */
 FFI_COMPLEX_TYPEDEF(sint, int, ffi_type_sint);
 /* ffi_type_complex_uchar */
 FFI_COMPLEX_TYPEDEF(uchar, unsigned char, ffi_type_uint8);

The new type descriptors can then be used like one of the built-in
type descriptors in the previous example.

File: libffi.info, Node: Multiple ABIs, Next: The Closure API, Prev: Types, Up: Using libffi

2.4 Multiple ABIs

A given platform may provide multiple different ABIs at once. For
instance, the x86 platform has both 'stdcall' and 'fastcall' functions.

'libffi' provides some support for this. However, this is
necessarily platform-specific.

File: libffi.info, Node: The Closure API, Next: Closure Example, Prev: Multiple ABIs, Up: Using libffi

2.5 The Closure API

'libffi' also provides a way to write a generic function - a function
that can accept and decode any combination of arguments. This can be
useful when writing an interpreter, or to provide wrappers for arbitrary
functions.

This facility is called the "closure API". Closures are not supported
on all platforms; you can check the 'FFI_CLOSURES' define to determine
whether they are supported on the current platform.

Because closures work by assembling a tiny function at runtime, they
require special allocation on platforms that have a non-executable heap.
Memory management for closures is handled by a pair of functions:

-- Function: void *ffi_closure_alloc (size_t SIZE, void **CODE)
Allocate a chunk of memory holding SIZE bytes. This returns a
pointer to the writable address, and sets *CODE to the
corresponding executable address.

 SIZE should be sufficient to hold a 'ffi_closure' object.

-- Function: void ffi_closure_free (void *WRITABLE)
Free memory allocated using 'ffi_closure_alloc'. The argument is
the writable address that was returned.

Once you have allocated the memory for a closure, you must construct
a 'ffi_cif' describing the function call. Finally you can prepare the
closure function:

-- Function: ffi_status ffi_prep_closure_loc (ffi_closure *CLOSURE,
ffi_cif CIF, void (FUN) (ffi_cif *CIF, void *RET, void
**ARGS, void *USER_DATA), void *USER_DATA, void *CODELOC)
Prepare a closure function.

 CLOSURE is the address of a 'ffi_closure' object; this is the
 writable address returned by 'ffi_closure_alloc'.

 CIF is the 'ffi_cif' describing the function parameters.

 USER_DATA is an arbitrary datum that is passed, uninterpreted, to
 your closure function.

 CODELOC is the executable address returned by 'ffi_closure_alloc'.

 FUN is the function which will be called when the closure is
 invoked.  It is called with the arguments:
 CIF
      The 'ffi_cif' passed to 'ffi_prep_closure_loc'.

 RET
      A pointer to the memory used for the function's return value.
      FUN must fill this, unless the function is declared as
      returning 'void'.

 ARGS
      A vector of pointers to memory holding the arguments to the
      function.

 USER_DATA
      The same USER_DATA that was passed to 'ffi_prep_closure_loc'.

 'ffi_prep_closure_loc' will return 'FFI_OK' if everything went ok,
 and something else on error.

 After calling 'ffi_prep_closure_loc', you can cast CODELOC to the
 appropriate pointer-to-function type.

You may see old code referring to 'ffi_prep_closure'. This function
is deprecated, as it cannot handle the need for separate writable and
executable addresses.

File: libffi.info, Node: Closure Example, Prev: The Closure API, Up: Using libffi

2.6 Closure Example

A trivial example that creates a new 'puts' by binding 'fputs' with
'stdout'.

 #include <stdio.h>
 #include <ffi.h>

 /* Acts like puts with the file given at time of enclosure. */
 void puts_binding(ffi_cif *cif, void *ret, void* args[],
                   void *stream)
 {
   *(ffi_arg *)ret = fputs(*(char **)args[0], (FILE *)stream);
 }

 typedef int (*puts_t)(char *);

 int main()
 {
   ffi_cif cif;
   ffi_type *args[1];
   ffi_closure *closure;

   void *bound_puts;
   int rc;

   /* Allocate closure and bound_puts */
   closure = ffi_closure_alloc(sizeof(ffi_closure), &bound_puts);

   if (closure)
     {
       /* Initialize the argument info vectors */
       args[0] = &ffi_type_pointer;

       /* Initialize the cif */
       if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
                        &ffi_type_sint, args) == FFI_OK)
         {
           /* Initialize the closure, setting stream to stdout */
           if (ffi_prep_closure_loc(closure, &cif, puts_binding,
                                    stdout, bound_puts) == FFI_OK)
             {
               rc = ((puts_t)bound_puts)("Hello World!");
               /* rc now holds the result of the call to fputs */
             }
         }
     }

   /* Deallocate both closure, and bound_puts */
   ffi_closure_free(closure);

   return 0;
 }

File: libffi.info, Node: Missing Features, Next: Index, Prev: Using libffi, Up: Top

3 Missing Features


'libffi' is missing a few features. We welcome patches to add support
for these.

  • Variadic closures.

  • There is no support for bit fields in structures.

  • The closure API is

  • The "raw" API is undocumented.

Note that variadic support is very new and tested on a relatively
small number of platforms.

File: libffi.info, Node: Index, Prev: Missing Features, Up: Top

Index


[index ]

  • Menu:

  • ABI: Introduction. (line 13)

  • Application Binary Interface: Introduction. (line 13)

  • calling convention: Introduction. (line 13)

  • cif: The Basics. (line 14)

  • closure API: The Closure API. (line 13)

  • closures: The Closure API. (line 13)

  • FFI: Introduction. (line 31)

  • ffi_call: The Basics. (line 62)

  • FFI_CLOSURES: The Closure API. (line 13)

  • ffi_closure_alloc: The Closure API. (line 19)

  • ffi_closure_free: The Closure API. (line 26)

  • ffi_prep_cif: The Basics. (line 16)

  • ffi_prep_cif_var: The Basics. (line 39)

  • ffi_prep_closure_loc: The Closure API. (line 34)

  • ffi_status: The Basics. (line 16)

  • ffi_status <1>: The Basics. (line 39)

  • ffi_status <2>: The Closure API. (line 34)

  • ffi_type: Structures. (line 11)

  • ffi_type <1>: Structures. (line 11)

  • ffi_type <2>: Complex. (line 15)

  • ffi_type <3>: Complex. (line 15)

  • ffi_type_complex_double: Primitive Types. (line 82)

  • ffi_type_complex_float: Primitive Types. (line 79)

  • ffi_type_complex_longdouble: Primitive Types. (line 85)

  • ffi_type_double: Primitive Types. (line 41)

  • ffi_type_float: Primitive Types. (line 38)

  • ffi_type_longdouble: Primitive Types. (line 71)

  • ffi_type_pointer: Primitive Types. (line 75)

  • ffi_type_schar: Primitive Types. (line 47)

  • ffi_type_sint: Primitive Types. (line 62)

  • ffi_type_sint16: Primitive Types. (line 23)

  • ffi_type_sint32: Primitive Types. (line 29)

  • ffi_type_sint64: Primitive Types. (line 35)

  • ffi_type_sint8: Primitive Types. (line 17)

  • ffi_type_slong: Primitive Types. (line 68)

  • ffi_type_sshort: Primitive Types. (line 56)

  • ffi_type_uchar: Primitive Types. (line 44)

  • ffi_type_uint: Primitive Types. (line 59)

  • ffi_type_uint16: Primitive Types. (line 20)

  • ffi_type_uint32: Primitive Types. (line 26)

  • ffi_type_uint64: Primitive Types. (line 32)

  • ffi_type_uint8: Primitive Types. (line 14)

  • ffi_type_ulong: Primitive Types. (line 65)

  • ffi_type_ushort: Primitive Types. (line 53)

  • ffi_type_void: Primitive Types. (line 10)

  • Foreign Function Interface: Introduction. (line 31)

  • void: The Basics. (line 62)

  • void <1>: The Closure API. (line 19)

  • void <2>: The Closure API. (line 26)

Tag Table:
Node: Top682
Node: Introduction1429
Node: Using libffi3061
Node: The Basics3547
Node: Simple Example7198
Node: Types8229
Node: Primitive Types8613
Node: Structures10734
Node: Type Example11608
Node: Complex12890
Node: Complex Type Example14308
Node: Multiple ABIs17360
Node: The Closure API17731
Node: Closure Example20675
Node: Missing Features22284
Node: Index22737
End Tag Table

免责声明:文章转载自《libffi》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇mac格式化重装系统登陆脚本下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

Android.mk文件官方使用说明

本页介绍了 ndk-build 所使用的 Android.mk 编译文件的语法。 概览 Android.mk 文件位于项目 jni/ 目录的子目录中,用于向编译系统描述源文件和共享库。它实际上是编译系统解析一次或多次的微小 GNU makefile 片段。Android.mk 文件用于定义 Application.mk、编译系统和环境变量所未定义的项目范...

EOSIO开发区块链DApp之智能合约

这是一步步的用EOSIO开发区块链DApp的第二部分,这部分将主要是为EOSIO平台开发智能合约。 示例智能合约的目的是模拟选举。我创建了一个EOSIO用户来托管智能合约。创建了两个公民用户来投票给候选人。投票记录保存在EOSIO区块链中。在此示例中,所有操作都在命令模式下运行。让我们开始吧。 开发智能合约 EOSIO执行以WebAssembly标准开发的...

Application.mk文件官方使用说明

本文档介绍了 ndk-build 所使用的 Application.mk 编译文件。 我们建议先阅读概念页面,然后再阅读本页面。 概览 Application.mk 指定了 ndk-build 的项目范围设置。默认情况下,它位于应用项目目录中的 jni/Application.mk下。 注意:其中许多参数也具有模块等效项。例如,APP_CFLAGS 对应...

Python Flask如何开发以太坊智能合约

将数据存储在数据库中是任何软件应用程序不可或缺的一部分。无论如何控制该数据库都有一个该数据的主控。区块链技术将数据存储到区块链网络内的区块中。因此,只要某个节点与网络同步,它们就会获得区块中数据的副本。因此,该技术中没有特定的数据主控。 在本教程中,我们将编写一份智能合约(我将进一步解释),以便在区块链上保留用户数据。我们将使用python web3(we...

以太坊合约简单部署和使用

1.准备一个已编写的合约: ——该合约是用solidity语言编写 pragma solidity ^0.4.0; contract test { function multiply(uint a) returns(uint d) { return a * 7; } } 编译合约 想要...

关于Android中so解析那些事

1、Android系统目前支持的CPU架构:ARMv5、ARMv7、x86、MIPS、ARMv8、MIPS64、x86_64,每一种都关联着一个ABI(Application Binary Interface)   2、ABI:定义了二进制文件(尤其是.so文件)如何运行在相应系统平台上,包括使用的指令集、内存对齐、可用的系统函数库。Android系统上,...