几种编码方式

摘要:
整理这篇文章的动机是两个问题:问题一:使用Windows记事本的“另存为”,可以在GBK、Unicode、Unicodebigendian和UTF-8这几种编码方式间相互转换。同样是txt文件,Windows是怎样识别编码方式的呢?问题二:最近在网上看到一个ConvertUTF.c,实现了UTF-32、UTF-16和UTF-8这三种编码方式的相互转换。区分中文编码的方法是高字节的最高位不为0。Unicode也是一种字符编码方法,不过它是由国际组织设计,可以容纳全世界所有语言文字的编码方案。

这是一篇程序员写给程序员的趣味读物。所谓趣味是指可以比较轻松地了解一些原来不清楚的概念,增进知识,类似于打RPG游戏的升级。整理这篇文章的动机是两个问题:
问题一:
使用Windows记事本的“另存为”,可以在GBK、Unicode、Unicode big endian和UTF-8这几种编码方式间相互转换。同样是txt文件,Windows是怎样识别编码方式的呢?
我很早前就发现Unicode、Unicode big endian和UTF-8编码的txt文件的开头会多出几个字节,分别是FF、FE(Unicode),FE、FF(Unicode big endian),EF、BB、BF(UTF-8)。但这些标记是基于什么标准呢?
问题二:
最近在网上看到一个ConvertUTF.c,实现了UTF-32、UTF-16和UTF-8这三种编码方式的相互转换。对于Unicode(UCS2)、GBK、UTF-8这些编码方式,我原来就了解。但这个程序让我有些糊涂,想不起来UTF-16和UCS2有什么关系。
查了查相关资料,总算将这些问题弄清楚了,顺带也了解了一些Unicode的细节。写成一篇文章,送给有过类似疑问的朋友。本文在写作时尽量做到通俗易懂,但要求读者知道什么是字节,什么是十六进制。
0、big endian和little endian
big endian和little endian是CPU处理多字节数的不同方式。例如“汉”字的Unicode编码是6C49。那么写到文件里时,究竟是将6C写在前面,还是将49写在前面?如果将6C写在前面,就是big endian。还是将49写在前面,就是little endian。
“endian”这个词出自《格列佛游记》。小人国的内战就源于吃鸡蛋时是究竟从大头(Big-Endian)敲开还是从小头(Little-Endian)敲开,由此曾发生过六次叛乱,其中一个皇帝送了命,另一个丢了王位。
我们一般将endian翻译成“字节序”,将big endian和little endian称作“大尾”和“小尾”。
1、字符编码、内码,顺带介绍汉字编码
字符必须编码后才能被计算机处理。计算机使用的缺省编码方式就是计算机的内码。早期的计算机使用7位的ASCII编码,为了处理汉字,程序员设计了用于简体中文的GB2312和用于繁体中文的big5。
GB2312(1980年)一共收录了7445个字符,包括6763个汉字和682个其它符号。汉字区的内码范围高字节从B0-F7,低字节从A1-FE,占用的码位是72*94=6768。其中有5个空位是D7FA-D7FE。
GB2312支持的汉字太少。1995年的汉字扩展规范GBK1.0收录了21886个符号,它分为汉字区和图形符号区。汉字区包括21003个字符。2000年的GB18030是取代GBK1.0的正式国家标准。该标准收录了27484个汉字,同时还收录了藏文、蒙文、维吾尔文等主要的少数民族文字。现在的PC平台必须支持GB18030,对嵌入式产品暂不作要求。所以手机、MP3一般只支持GB2312。
从ASCII、GB2312、GBK到GB18030,这些编码方法是向下兼容的,即同一个字符在这些方案中总是有相同的编码,后面的标准支持更多的字符在这些编码中,英文和中文可以统一地处理。区分中文编码的方法是高字节的最高位不为0。按照程序员的称呼,GB2312、GBK到GB18030都属于双字节字符集 (DBCS)。
有的中文Windows的缺省内码还是GBK,可以通过GB18030升级包升级到GB18030。不过GB18030相对GBK增加的字符,普通人是很难用到的,通常我们还是用GBK指代中文Windows内码。
这里还有一些细节:
GB2312的原文还是区位码,从区位码到内码,需要在高字节和低字节上分别加上A0。

PS:1980年,为了使每个汉字有一个全国统一的代码,我国颁布了汉字编码的国家标准:GB2312-80《信息交换用汉字编码字符集》基本集,这个字符集是我国中文信息处理技术的发展基础,也是目前国内所有汉字系统的统一标准。国标码是一个四位十六进制数,区位码是一个四位的十进制数,每个国标码或区位码都对应着一个唯一的汉字或符号,但因为十六进制数我们很少用到,所以大家常用的是区位码,它的前两位叫做区码,后两位叫做位码。
在DBCS中,GB内码的存储格式始终是big endian,即高位在前。
GB2312的两个字节的最高位都是1。但符合这个条件的码位只有128*128=16384个。所以GBK和GB18030的低字节最高位都可能不是1。不过这不影响DBCS字符流的解析:在读取DBCS字符流时,只要遇到高位为1的字节,就可以将下两个字节作为一个双字节编码,而不用管低字节的高位是什么。
2、Unicode、UCS和UTF
前面提到从ASCII、GB2312、GBK到GB18030的编码方法是向下兼容的。而Unicode只与ASCII兼容(更准确地说,是与ISO-8859-1兼容),与GB码不兼容。例如“汉”字的Unicode编码是6C49,而GB码是BABA。
Unicode也是一种字符编码方法,不过它是由国际组织设计,可以容纳全世界所有语言文字的编码方案。Unicode的学名是"Universal Multiple-Octet Coded Character Set",简称为UCS。UCS可以看作是"Unicode Character Set"的缩写。
根据维基百科全书(http://zh.wikipedia.org/wiki/)的记载:历史上存在两个试图独立设计Unicode的组织,即国际标准化组织(ISO)和一个软件制造商的协会(unicode.org)。ISO开发了ISO 10646项目,Unicode协会开发了Unicode项目。
在1991年前后,双方都认识到世界不需要两个不兼容的字符集。于是它们开始合并双方的工作成果,并为创立一个单一编码表而协同工作。从Unicode2.0开始,Unicode项目采用了与ISO 10646-1相同的字库和字码。
目前两个项目仍都存在,并独立地公布各自的标准。Unicode协会现在的最新版本是2005年的Unicode 4.1.0。ISO的最新标准是10646-3:2003。
UCS规定了怎么用多个字节表示各种文字。怎样传输这些编码,是由UTF(UCS Transformation Format)规范规定的,常见的UTF规范包括UTF-8、UTF-7、UTF-16。
IETF的RFC2781和RFC3629以RFC的一贯风格,清晰、明快又不失严谨地描述了UTF-16和UTF-8的编码方法。我总是记不得IETF是Internet Engineering Task Force的缩写但IETF负责维护的RFC是Internet上一切规范的基础。
3、UCS-2、UCS-4、BMP
UCS有两种格式:UCS-2和UCS-4。顾名思义,UCS-2就是用两个字节编码,UCS-4就是用4个字节(实际上只用了31位,最高位必须为0)编码。下面让我们做一些简单的数学游戏:
UCS-2有2^16=65536个码位,UCS-4有2^31=2147483648个码位。
UCS-4根据最高位为0的最高字节分成2^7=128个group。每个group再根据次高字节分为256个plane。每个plane根据第3个字节分为256行 (rows),每行包含256个cells。当然同一行的cells只是最后一个字节不同,其余都相同。
group 0的plane 0被称作Basic Multilingual Plane, 即BMP。或者说UCS-4中,高两个字节为0的码位被称作BMP。
将UCS-4的BMP去掉前面的两个零字节就得到了UCS-2。在UCS-2的两个字节前加上两个零字节,就得到了UCS-4的BMP。而目前的UCS-4规范中还没有任何字符被分配在BMP之外。
4、UTF编码
UTF-8就是以8位为单元对UCS进行编码。从UCS-2到UTF-8的编码方式如下:
UCS-2编码(16进制) UTF-8 字节流(二进制)
0000 - 007F 0xxxxxxx
0080 - 07FF 110xxxxx 10xxxxxx
0800 - FFFF 1110xxxx 10xxxxxx 10xxxxxx
例如“汉”字的Unicode编码是6C49。6C49在0800-FFFF之间,所以肯定要用3字节模板了:1110xxxx 10xxxxxx 10xxxxxx。将6C49写成二进制是:0110 110001 001001, 用这个比特流依次代替模板中的x,得到:11100110 10110001 10001001,即E6 B1 89。
读者可以用记事本测试一下我们的编码是否正确。
UTF-16以16位为单元对UCS进行编码。对于小于0x10000的UCS码,UTF-16编码就等于UCS码对应的16位无符号整数。对于不小于0x10000的UCS码,定义了一个算法。不过由于实际使用的UCS2,或者UCS4的BMP必然小于0x10000,所以就目前而言,可以认为UTF-16和UCS-2基本相同。但UCS-2只是一个编码方案,UTF-16却要用于实际的传输,所以就不得不考虑字节序的问题。
5、UTF的字节序和BOM
UTF-8以字节为编码单元,没有字节序的问题。UTF-16以两个字节为编码单元,在解释一个UTF-16文本前,首先要弄清楚每个编码单元的字节序。例如收到一个“奎”的Unicode编码是594E,“乙”的Unicode编码是4E59。如果我们收到UTF-16字节流“594E”,那么这是“奎”还是“乙”?
Unicode规范中推荐的标记字节顺序的方法是BOM。BOM不是“Bill Of Material”的BOM表,而是Byte Order Mark。BOM是一个有点小聪明的想法:
在UCS编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输字符"ZERO WIDTH NO-BREAK SPACE"。
这样如果接收者收到FEFF,就表明这个字节流是Big-Endian的;如果收到FFFE,就表明这个字节流是Little-Endian的。因此字符"ZERO WIDTH NO-BREAK SPACE"又被称作BOM。
UTF-8不需要BOM来表明字节顺序,但可以用BOM来表明编码方式。字符"ZERO WIDTH NO-BREAK SPACE"的UTF-8编码是EF BB BF(读者可以用我们前面介绍的编码方法验证一下)。所以如果接收者收到以EF BB BF开头的字节流,就知道这是UTF-8编码了。
Windows就是使用BOM来标记文本文件的编码方式的。
6、进一步的参考资料
本文主要参考的资料是 "Short overview of ISO-IEC 10646 and Unicode" (http://www.nada.kth.se/i18n/ucs/unicode-iso10646-oview.html)。
我还找了两篇看上去不错的资料,不过因为我开始的疑问都找到了答案,所以就没有看:
"Understanding Unicode A general introduction to the Unicode Standard" (http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&item_id=IWS-Chapter04a)
"Character set encoding basics Understanding character set encodings and legacy encodings" (http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&item_id=IWS-Chapter03)
我写过UTF-8、UCS-2、GBK相互转换的软件包,包括使用Windows API和不使用Windows API的版本。以后有时间的话,我会整理一下放到我的个人主页上
我是想清楚所有问题后才开始写这篇文章的,原以为一会儿就能写好。没想到考虑措辞和查证细节花费了很长时间,竟然从下午1:30写到9:00。希望有读者能从中受益。
参考资料:http://blog.csdn.net/fmddlmyy/
-----------------------------------------------------------------------------
Unicode,GBK,GB2312,UTF-8概念基础
本部分采用重用,转载一篇文章来完成这部分的目标。
来源:holen'blog 对字符编码与Unicode,ISO 10646,UCS,UTF8,UTF16,GBK,GB2312的理解
地址:http://blog.donews.com/holen/archive/2004/11/30/188182.aspx
Unicode:
unicode.org制定的编码机制, 要将全世界常用文字都函括进去.
在1.0中是16位编码, 由U+0000到U+FFFF. 每个2byte码对应一个字符; 在2.0开始抛弃了16位限制, 原来的16位作为基本位平面, 另外增加了16个位平面, 相当于20位编码, 编码范围0到0x10FFFF.
UCS:
ISO制定的ISO10646标准所定义的 Universal Character Set, 采用4byte编码.
Unicode与UCS的关系:
ISO与unicode.org是两个不同的组织, 因此最初制定了不同的标准; 但自从unicode2.0开始, unicode采用了与ISO 10646-1相同的字库和字码, ISO也承诺ISO10646将不会给超出0x10FFFF的UCS-4编码赋值, 使得两者保持一致.
UCS的编码方式:
UCS-2, 与unicode的2byte编码基本一样.
UCS-4, 4byte编码, 目前是在UCS-2前加上2个全零的byte.
UTF: Unicode/UCS Transformation Format
UTF-8, 8bit编码, ASCII不作变换, 其他字符做变长编码, 每个字符1-3 byte. 通常作为外码. 有以下优点:
* 与CPU字节顺序无关, 可以在不同平台之间交流
* 容错能力高, 任何一个字节损坏后, 最多只会导致一个编码码位损失, 不会链锁错误(如GB码错一个字节就会整行乱码)
UTF-16, 16bit编码, 是变长码, 大致相当于20位编码, 值在0到0x10FFFF之间, 基本上就是unicode编码的实现. 它是变长码, 与CPU字序有关, 但因为最省空间, 常作为网络传输的外码.
UTF-16是unicode的preferred encoding.
UTF-32, 仅使用了unicode范围(0到0x10FFFF)的32位编码, 相当于UCS-4的子集.
UTF与unicode的关系:
Unicode是一个字符集, 可以看作为内码.
而UTF是一种编码方式, 它的出现是因为unicode不适宜在某些场合直接传输和处理. UTF-16直接就是unicode编码, 没有变换, 但它包含了0x00在编码内, 头256字节码的第一个byte都是0x00, 在操作系统(C语言)中有特殊意义, 会引起问题. 采用UTF-8编码对unicode的直接编码作些变换可以避免这问题, 并带来一些优点.
中国国标编码:
GB 13000: 完全等同于ISO 10646-1/Unicode 2.1, 今后也将随ISO 10646/Unicode的标准更改而同步更改.
GBK: 对GB2312的扩充, 以容纳GB2312字符集范围以外的Unicode 2.1的统一汉字部分, 并且增加了部分unicode中没有的字符.
GB 18030-2000: 基于GB 13000, 作为Unicode 3.0的GBK扩展版本, 覆盖了所有unicode编码, 地位等同于UTF-8, UTF-16, 是一种unicode编码形式. 变长编码, 用单字节/双字节/4字节对字符编码. GB18030向下兼容GB2312/GBK.
GB 18030是中国所有非手持/嵌入式计算机系统的强制实施标准.
-------------------------------
编码常见的术语和概念
转自
http://www.cppblog.com/qiujian5628/archive/2008/01/24/41773.html
什么是 UCS 和 ISO 10646?
国际标准 ISO 10646 定义了 通用字符集 (Universal Character Set, UCS). UCS 是所有其他字符集标准的一个超集. 它保证与其他字符集是双向兼容的. 就是说, 如果你将任何文本字符串翻译到 UCS格式, 然后再翻译回原编码, 你不会丢失任何信息.
UCS 包含了用于表达所有已知语言的字符. 不仅包括拉丁语,希腊语, 斯拉夫语,希伯来语,阿拉伯语,亚美尼亚语和乔治亚语的描述, 还包括中文, 日文和韩文这样的象形文字, 以及 平假名, 片假名, 孟加拉语, 旁遮普语果鲁穆奇字符(Gurmukhi), 泰米尔语, 印.埃纳德语(Kannada), Malayalam, 泰国语, 老挝语, 汉语拼音(Bopomofo), Hangul, Devangari, Gujarati, Oriya, Telugu 以及其他数也数不清的语. 对于还没有加入的语言, 由于正在研究怎样在计算机中最好地编码它们, 因而最终它们都将被加入. 这些语言包括 Tibetian, 高棉语, Runic(古代北欧文字), 埃塞俄比亚语, 其他象形文字, 以及各种各样的印-欧语系的语言, 还包括挑选出来的艺术语言比如 Tengwar, Cirth 和 克林贡语(Klingon). UCS 还包括大量的图形的, 印刷用的, 数学用的和科学用的符号, 包括所有由 TeX, Postscript, MS-DOS,MS-Windows, Macintosh, OCR 字体, 以及许多其他字处理和出版系统提供的字符.
ISO 10646 定义了一个 31 位的字符集. 然而, 在这巨大的编码空间中, 迄今为止只分配了前 65534 个码位 (0x0000 到 0xFFFD). 这个 UCS 的 16位子集称为 基本多语言面 (Basic Multilingual Plane, BMP). 将被编码在 16 位 BMP 以外的字符都属于非常特殊的字符(比如象形文字), 且只有专家在历史和科学领域里才会用到它们. 按当前的计划, 将来也许再也不会有字符被分配到从 0x000000 到 0x10FFFF 这个覆盖了超过 100 万个潜在的未来字符的 21 位的编码空间以外去了. ISO 10646-1 标准第一次发表于 1993 年, 定义了字符集与 BMP 中内容的架构. 定义 BMP 以外的字符编码的第二部分 ISO 10646-2 正在准备中, 但也许要过好几年才能完成. 新的字符仍源源不断地加入到 BMP 中, 但已经存在的字符是稳定的且不会再改变了.
UCS 不仅给每个字符分配一个代码, 而且赋予了一个正式的名字. 表示一个 UCS 或 Unicode 值的十六进制数, 通常在前面加上 "U+", 就象 U+0041 代表字符"拉丁大写字母A". UCS 字符 U+0000 到 U+007F 与 US-ASCII(ISO 646) 是一致的, U+0000 到 U+00FF 与 ISO 8859-1(Latin-1) 也是一致的. 从 U+E000 到 U+F8FF, 已经 BMP 以外的大范围的编码是为私用保留的.
什么是组合字符?
UCS里有些编码点分配给了 组合字符.它们类似于打字机上的无间隔重音键. 单个的组合字符不是一个完整的字符. 它是一个类似于重音符或其他指示标记, 加在前一个字符后面. 因而, 重音符可以加在任何字符后面. 那些最重要的被加重的字符, 就象普通语言的正字法(orthographies of common languages)里用到的那种, 在 UCS 里都有自己的位置, 以确保同老的字符集的向后兼容性. 既有自己的编码位置, 又可以表示为一个普通字符跟随一个组合字符的被加重字符, 被称为 预作字符(precomposed characters). UCS 里的预作字符是为了同没有预作字符的旧编码, 比如 ISO 8859, 保持向后兼容性而设的. 组合字符机制允许在任何字符后加上重音符或其他指示标记, 这在科学符号中特别有用, 比如数学方程式和国际音标字母, 可能会需要在一个基本字符后组合上一个或多个指示标记.
组合字符跟随着被修饰的字符. 比如, 德语中的元音变音字符 ("拉丁大写字母A 加上分音符"), 既可以表示为 UCS 码 U+00C4 的预作字符, 也可以表示成一个普通 "拉丁大写字母A" 跟着一个"组合分音符":U+0041 U+0308 这样的组合. 当需要堆叠多个重音符, 或在一个基本字符的上面和下面都要加上组合标记时, 可以使用多个组合字符. 比如在泰国文中, 一个基本字符最多可加上两个组合字符.
什么是 UCS 实现级别?
不是所有的系统都需要支持象组合字符这样的 UCS 里所有的先进机制. 因此 ISO 10646 指定了下列三种实现级别:
级别1
不支持组合字符和 Hangul Jamo 字符 (一种特别的, 更加复杂的韩国文的编码, 使用两个或三个子字符来编码一个韩文音节)
级别2
类似于级别1, 但在某些文字中, 允许一列固定的组合字符 (例如, 希伯来文, 阿拉伯文, Devangari, 孟加拉语, 果鲁穆奇语, Gujarati, Oriya, 泰米尔语, Telugo, 印.埃纳德语, Malayalam, 泰国语和老挝语). 如果没有这最起码的几个组合字符, UCS 就不能完整地表达这些语言.
级别3
支持所有的 UCS 字符, 例如数学家可以在任意一个字符上加上一个 tilde(颚化符号,西班牙语字母上面的~)或一个箭头(或两者都加).
什么是 Unicode?
历史上, 有两个独立的, 创立单一字符集的尝试. 一个是国际标准化组织(ISO)的 ISO 10646 项目, 另一个是由(一开始大多是美国的)多语言软件制造商组成的协会组织的Unicode 项目. 幸运的是, 1991年前后, 两个项目的参与者都认识到, 世界不需要两个不同的单一字符集. 它们合并双方的工作成果, 并为创立一个单一编码表而协同工作. 两个项目仍都存在并独立地公布各自的标准, 但 Unicode 协会和 ISO/IEC JTC1/SC2 都同意保持 Unicode 和 ISO 10646 标准的码表兼容, 并紧密地共同调整任何未来的扩展.
那么 Unicode 和 ISO 10646 不同在什么地方?
Unicode 协会公布的Unicode 标准严密地包含了 ISO 10646-1 实现级别3的基本多语言面. 在两个标准里所有的字符都在相同的位置并且有相同的名字.
Unicode 标准额外定义了许多与字符有关的语义符号学, 一般而言是对于实现高质量的印刷出版系统的更好的参考. Unicode 详细说明了绘制某些语言(比如阿拉伯语)表达形式的算法, 处理双向文字(比如拉丁与希伯来文混合文字)的算法和 排序与字符串比较 所需的算法, 以及其他许多东西.
另一方面, ISO 10646 标准, 就象广为人知的 ISO 8859 标准一样, 只不过是一个简单的字符集表. 它指定了一些与标准有关的术语, 定义了一些编码的别名, 并包括了规范说明, 指定了怎样使用 UCS 连接其他 ISO 标准的实现, 比如 ISO 6429 和 ISO 2022. 还有一些与 ISO 紧密相关的, 比如 ISO 14651 是关于 UCS 字符串排序的.
考虑到 Unicode 标准有一个易记的名字, 且在任何好的书店里的 Addison-Wesley 里有, 只花费 ISO 版本的一小部分, 且包括更多的辅助信息, 因而它成为使用广泛得多的参考也就不足为奇了. 然而, 一般认为, 用于打印 ISO 10646-1 标准的字体在某些方面的质量要高于用于打印 Unicode 2.0的. 专业字体设计者总是被建议说要两个标准都实现, 但一些提供的样例字形有显著的区别. ISO 10646-1 标准同样使用四种不同的风格变体来显示表意文字如中文, 日文和韩文 (CJK), 而 Unicode 2.0 的表里只有中文的变体. 这导致了普遍的认为 Unicode 对日本用户来说是不可接收的传说, 尽管是错误的.
什么是 UTF-8?
首先 UCS 和 Unicode 只是分配整数给字符的编码表. 现在存在好几种将一串字符表示为一串字节的方法. 最显而易见的两种方法是将 Unicode 文本存储为 2 个 或 4 个字节序列的串. 这两种方法的正式名称分别为 UCS-2 和 UCS-4. 除非另外指定, 否则大多数的字节都是这样的(Bigendian convention). 将一个 ASCII 或 Latin-1 的文件转换成 UCS-2 只需简单地在每个 ASCII 字节前插入 0x00. 如果要转换成 UCS-4, 则必须在每个 ASCII 字节前插入三个 0x00.
在 Unix 下使用 UCS-2 (或 UCS-4) 会导致非常严重的问题. 用这些编码的字符串会包含一些特殊的字符, 比如 '

免责声明:内容来源于网络,仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇QTP的基本功能介绍document.all.item作用下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

mysql安装使用

  linux系统 mysql-5.7.14-linux.zip部署包支持在CentOS 6.x/7.x 服务器硬盘大小要求     a) /data/mysql_data  如果存在该独立分区,要求该分区 >10G b) 如果仅存在 /data 分区, 要求该分区 >10G c) 否则,要求根分区/ > 10G MySQL_INST...

JS 富文本编码、解码

第一种  escape()和unescape()方法 escape() 方法能够把 ASCII之外的所有字符转换为 %xx 或 %uxxxx(x表示十六进制的数字)的转义序列。从 u000 到 u00ff 的 Unicode 字符由转义序列 %xx 替代,其他所有 Unicode 字符由 %uxxxx 序列替代。  如 var str = "编程最美";...

C#编程总结(十)字符转码

C#编程总结(十)字符转码 为了适应某种特殊需要,字符需要根据规则进行转码,便于传输、展现以及其他操作等。 看看下面的转码,就知道他的用处了。 1、字符串转码 根据原编码格式与目标编码格式,完成转换。不过可能出现乱码哦。上一章已经介绍过了。 代码: /// <summary> /// 字符串编码转换...

java字符格式

http://blog.chinaunix.net/uid-12348673-id-3335300.html http://blog.csdn.net/zhouyong80/article/details/1900100无论是对程序的本地化还是国际化,都会涉及到字符编码的转换的问题。尤其在web应用中常常需要处理中文字符,这时就需要进行字符串的编码转换,将...

JSP中字符编码转换问题

问题描述:一个input.jsp页面中的参数,传递到另外一个save.jsp页面上,然后存入到数据库中,如果input.jsp页面输入偶数中文没有问题,输入奇数则出现?,存入数据库的也是?。 问题源码:save.jsp中 <%    String fileName=request.getParameter("Name");           Sys...

那些年java MD5加密字符编码的坑

相信做过MD5加密的童鞋都遇到过字符编码的坑,一般加密出来的结果和其他人不一样都是字符编码不一致导致的,比如类文件的字符编码、浏览器的字符编码等和对方不一致,所以就需要转码统一字符。 以下是笔者转码过程中遇到的坑: 不要new String("XXXX".getBytes("UTF-8")),之后将转码后的字串传入MD5去加密,会遇到意想不到的效果,有的字...