Akka源码分析-Remote-发消息

摘要:
既然actorOf还是委托给了LocalActorRef,那么在本地创建的Actor发消息还是跟以前一样的,那么如果如何给远程的Actor发消息呢?我们一般是通过actorSelection或者给远程Actor发送一个Identify消息,来接收对应的ActorRef,然后再发消息。/***Constructan[[akka.actor.ActorSelection]]fromthegivenpath,whichis*parsedforwildcards.Noattemptismadetoverifytheexistenceofanypartof*thesuppliedpath,itisrecommendedtosendamessageandgatherthe*repliesinordertoresolvethematchingsetofactors.*/defactorSelection:ActorSelection=pathmatch{caseRelativeActorPathifActorSelectionelseifActorSelectionelseActorSelectioncaseActorPathExtractorActorSelectioncase_ActorSelection}我们发现它支持两种类型的path:RelativeActorPath、ActorPathExtractor。对于远程Actor,我们一般会指定主机名、端口号,例如akka.tcp://actorSystemName@10.0.0.1:2552/user/actorName,根据URI的定义,这个URI的schema是akka.tcp,很显然是Absolute,那就会返回None。经调试,address是akka.tcp://actorSystemName@10.0.0.1:2552,elems就是后面的user、actorName了。

上一篇博客我们介绍了remote模式下Actor的创建,其实与local的创建并没有太大区别,一般情况下还是使用LocalActorRef创建了Actor。那么发消息是否意味着也是相同的呢?

既然actorOf还是委托给了LocalActorRef,那么在本地创建的Actor发消息还是跟以前一样的,那么如果如何给远程的Actor发消息呢?我们一般是通过actorSelection或者给远程Actor发送一个Identify消息,来接收对应的ActorRef,然后再发消息。我们来分析一下这两者的区别。

首先来看actorSelection,不管是用ActorSystem或者ActorContext的actorSelection方法,最终都是调用了ActorRefFactory对应的方法。

/**
   * Construct an [[akka.actor.ActorSelection]] from the given path, which is
   * parsed for wildcards (these are replaced by regular expressions
   * internally). No attempt is made to verify the existence of any part of
   * the supplied path, it is recommended to send a message and gather the
   * replies in order to resolve the matching set of actors.
   */
  def actorSelection(path: String): ActorSelection = path match {
    case RelativeActorPath(elems) ⇒
      if (elems.isEmpty) ActorSelection(provider.deadLetters, "")
      else if (elems.head.isEmpty) ActorSelection(provider.rootGuardian, elems.tail)
      else ActorSelection(lookupRoot, elems)
    case ActorPathExtractor(address, elems) ⇒
      ActorSelection(provider.rootGuardianAt(address), elems)
    case _ ⇒
      ActorSelection(provider.deadLetters, "")
  }

我们发现它支持两种类型的path:RelativeActorPath、ActorPathExtractor。

/**
 * Extractor for so-called “relative actor paths” as in “relative URI”, not in
 * “relative to some actor”. Examples:
 *
 *  * "grand/child"
 *  * "/user/hello/world"
 */
object RelativeActorPath extends PathUtils {
  def unapply(addr: String): Option[immutable.Seq[String]] = {
    try {
      val uri = new URI(addr)
      if (uri.isAbsolute) None
      else Some(split(uri.getRawPath, uri.getRawFragment))
    } catch {
      case _: URISyntaxException ⇒ None
    }
  }
}

RelativeActorPath提取器比较简单,就是创建了一个URI对象,然后判断其是否为Absolute,如果是就返回None,如果不是就返回对应的elemes。对于远程Actor,我们一般会指定主机名、端口号,例如akka.tcp://actorSystemName@10.0.0.1:2552/user/actorName,根据URI的定义,这个URI的schema是akka.tcp,很显然是Absolute,那就会返回None。

/**
 * Given an ActorPath it returns the Address and the path elements if the path is well-formed
 */
object ActorPathExtractor extends PathUtils {
  def unapply(addr: String): Option[(Address, immutable.Iterable[String])] =
    try {
      val uri = new URI(addr)
      uri.getRawPath match {
        case null ⇒ None
        case path ⇒ AddressFromURIString.unapply(uri).map((_, split(path, uri.getRawFragment).drop(1)))
      }
    } catch {
      case _: URISyntaxException ⇒ None
    }
}

ActorPathExtractor这个提取器的名称定义的是有问题的,既然actorSelection只支持两种类型的路径选择:本地和远程。第一个解析器定义成相对路径,那么后面一个就直接是绝对路径好了啊,为啥用ActorPathExtractor这样蹩脚的命名?难道本地模式下,就不是ActorPath提取器了?我们来看看对于akka.tcp://actorSystemName@10.0.0.1:2552/user/actorName提取出了什么。经调试,address是akka.tcp://actorSystemName@10.0.0.1:2552,elems就是后面的user、actorName了。

也就是说remote模式下,如果有host、prot等信息就会返回ActorSelection(provider.rootGuardianAt(address), elems)这个类。不过好像无论哪种情况都返回这个类,好尴尬啊,但传入的第一个参数是不同的:provider.rootGuardianAt(address)。也就是说actorSelection这个函数是不区分当前的模式的,只要含有host/port就会传入provider.rootGuardianAt(address),否则就传入provider.rootGuardian。如果在local模式下,也强制用actorSelection查找远程Actor会发生什么呢?我们来看看LocalActorRefProvider。

  override def rootGuardianAt(address: Address): ActorRef =
    if (address == rootPath.address) rootGuardian
    else deadLetters

local模式下,如果待查询actor的地址就是本地地址,则直接在本地返回查找;否则就返回deadLetters。其实是无法查找远程actor的。那么RemoteActorRefProvider呢?

def rootGuardianAt(address: Address): ActorRef = {
    if (hasAddress(address)) rootGuardian
    else try {
      new RemoteActorRef(transport, transport.localAddressForRemote(address),
        RootActorPath(address), Nobody, props = None, deploy = None)
    } catch {
      case NonFatal(e) ⇒
        log.error(e, "No root guardian at [{}]", address)
        new EmptyLocalActorRef(this, RootActorPath(address), eventStream)
    }
  }

当然了,它也会判断一下本地地址是否包含待查询地址(防止多网卡或其他特殊情况),如果包含,则意味着是本地Actor交给rootGuardian;否则就创建RemoteActorRef。

分析到这里我们知道了,其实在remote模式下,actorSelection返回了一个RemoteActorRef,还记得这个类的作用嘛?我们之前简单分析过,它其实是对远程Acotor的一个本地网络代理,也就是说所有通过actorSelection发送给远程actor的消息,都会经过他中转。

我们继续分析ActorSelection的源码

/**
   * Construct an ActorSelection from the given string representing a path
   * relative to the given target. This operation has to create all the
   * matching magic, so it is preferable to cache its result if the
   * intention is to send messages frequently.
   */
  def apply(anchorRef: ActorRef, elements: Iterable[String]): ActorSelection = {
    val compiled: immutable.IndexedSeq[SelectionPathElement] = elements.collect({
      case x if !x.isEmpty ⇒
        if ((x.indexOf('?') != -1) || (x.indexOf('*') != -1)) SelectChildPattern(x)
        else if (x == "..") SelectParent
        else SelectChildName(x)
    })(scala.collection.breakOut)
    new ActorSelection with ScalaActorSelection {
      override val anchor = anchorRef
      override val path = compiled
    }
  }

很显然这里的anchorRef是上面创建的RemoteActorRef实例,其中ActorSelection的anchor(锚定)是anchorRef。至此,一个ActorSelection创建完毕。那么如何发消息呢?这就需要分析tell或者!方法了。

  def tell(msg: Any, sender: ActorRef): Unit =
    ActorSelection.deliverSelection(anchor.asInstanceOf[InternalActorRef], sender,
      ActorSelectionMessage(msg, path, wildcardFanOut = false))

其实乍一看,我们应该明白,这就是在deliverSelection函数内部,把消息封装成ActorSelectionMessage发送给了anchor。

Akka源码分析-Remote-发消息第1张

该函数首先判断sel的elements是否为空,很显然不为空,进入rec函数。该函数比较复杂而且还是一个尾递归函数,但我们知道此处的ref就是RemoteActorRef,那么RemoteActorRef是不是一个ActorRefWithCell呢?

private[akka] class RemoteActorRef private[akka] (
  remote:                RemoteTransport,
  val localAddressToUse: Address,
  val path:              ActorPath,
  val getParent:         InternalActorRef,
  props:                 Option[Props],
  deploy:                Option[Deploy])
  extends InternalActorRef with RemoteRef 

那么rec就会走到case _的逻辑,也就是把消息转发给了前面创建的RemoteActorRef,我们来看看这个示例是如何实现tell的。

override def !(message: Any)(implicit sender: ActorRef = Actor.noSender): Unit = {
    if (message == null) throw InvalidMessageException("Message is null")
    try remote.send(message, OptionVal(sender), this) catch handleException(message, sender)
  }

RemoteActorRef这个类,通过remote把消息发送出去了,那么remote是什么呢?RemoteTransport是不是很熟悉?在ActorSystem启动的时候我们分析过这个对象,它是Remoting类的实例,Remoting里面send方法是怎样的呢?

override def send(message: Any, senderOption: OptionVal[ActorRef], recipient: RemoteActorRef): Unit = endpointManager match {
    case Some(manager) ⇒ manager.tell(Send(message, senderOption, recipient), sender = senderOption getOrElse Actor.noSender)
    case None          ⇒ throw new RemoteTransportExceptionNoStackTrace("Attempted to send remote message but Remoting is not running.", null)
  }

它又把消息转发给了manager,而manager就是endpointManager。endpointManager是不是也比较眼熟呢?前面文章中我们也见到过,这是一个EndpointManager实例,而EndpointManager是一个Actor。请注意这里用Send又对message进行了封装。EndpointManager是如何对Send消息进行反应的呢?

case s @ Send(message, senderOption, recipientRef, _) ⇒
      val recipientAddress = recipientRef.path.address

      def createAndRegisterWritingEndpoint(): ActorRef = {
        endpoints.registerWritableEndpoint(
          recipientAddress,
          uid = None,
          createEndpoint(
            recipientAddress,
            recipientRef.localAddressToUse,
            transportMapping(recipientRef.localAddressToUse),
            settings,
            handleOption = None,
            writing = true))
      }

      endpoints.writableEndpointWithPolicyFor(recipientAddress) match {
        case Some(Pass(endpoint, _)) ⇒
          endpoint ! s
        case Some(Gated(timeOfRelease)) ⇒
          if (timeOfRelease.isOverdue()) createAndRegisterWritingEndpoint() ! s
          else extendedSystem.deadLetters ! s
        case Some(Quarantined(uid, _)) ⇒
          // timeOfRelease is only used for garbage collection reasons, therefore it is ignored here. We still have
          // the Quarantined tombstone and we know what UID we don't want to accept, so use it.
          createAndRegisterWritingEndpoint() ! s
        case None ⇒
          createAndRegisterWritingEndpoint() ! s

      }

分析以上逻辑,简单来看,会先判断是不是存在一个endpoint,如果存在说明链接已经建立,可以直接发送,否则出于其他状态,就重新创建endpoint,然后把消息转发给该endpoint。

def registerWritableEndpoint(address: Address, uid: Option[Int], endpoint: ActorRef): ActorRef =
      addressToWritable.get(address) match {
        case Some(Pass(e, _)) ⇒
          throw new IllegalArgumentException(s"Attempting to overwrite existing endpoint [$e] with [$endpoint]")
        case _ ⇒
          // note that this overwrites Quarantine marker,
          // but that is ok since we keep the quarantined uid in addressToRefuseUid
          addressToWritable += address → Pass(endpoint, uid)
          writableToAddress += endpoint → address
          endpoint
      }

registerWritableEndpoint没有太复杂的逻辑,就是查询addressToWritable这个HashMap,如果不存在则把对应的endpoint加入缓存,并返回endpoint。而endpoint是通过createEndpoint创建的。

private def createEndpoint(
    remoteAddress:    Address,
    localAddress:     Address,
    transport:        AkkaProtocolTransport,
    endpointSettings: RemoteSettings,
    handleOption:     Option[AkkaProtocolHandle],
    writing:          Boolean): ActorRef = {
    require(transportMapping contains localAddress, "Transport mapping is not defined for the address")
    // refuseUid is ignored for read-only endpoints since the UID of the remote system is already known and has passed
    // quarantine checks
    val refuseUid = endpoints.refuseUid(remoteAddress)

    if (writing) context.watch(context.actorOf(
      RARP(extendedSystem).configureDispatcher(ReliableDeliverySupervisor.props(
        handleOption,
        localAddress,
        remoteAddress,
        refuseUid,
        transport,
        endpointSettings,
        AkkaPduProtobufCodec,
        receiveBuffers)).withDeploy(Deploy.local),
      "reliableEndpointWriter-" + AddressUrlEncoder(remoteAddress) + "-" + endpointId.next()))
    else context.watch(context.actorOf(
      RARP(extendedSystem).configureDispatcher(EndpointWriter.props(
        handleOption,
        localAddress,
        remoteAddress,
        refuseUid,
        transport,
        endpointSettings,
        AkkaPduProtobufCodec,
        receiveBuffers,
        reliableDeliverySupervisor = None)).withDeploy(Deploy.local),
      "endpointWriter-" + AddressUrlEncoder(remoteAddress) + "-" + endpointId.next()))
  }

createEndpoint最终创建了ReliableDeliverySupervisor这个Actor,也就是说RemoteActorRef最终又把消息发送给了ReliableDeliverySupervisor,ReliableDeliverySupervisor收到消息去调用handleSend方法。

Akka源码分析-Remote-发消息第2张

  private def handleSend(send: Send): Unit =
    if (send.message.isInstanceOf[SystemMessage]) {
      val sequencedSend = send.copy(seqOpt = Some(nextSeq()))
      tryBuffer(sequencedSend)
      // If we have not confirmed the remote UID we cannot transfer the system message at this point just buffer it.
      // GotUid will kick resendAll() causing the messages to be properly written.
      // Flow control by not sending more when we already have many outstanding.
      if (uidConfirmed && resendBuffer.nonAcked.size <= settings.SysResendLimit)
        writer ! sequencedSend
    } else writer ! send

除去特殊情况,用户发的普通消息又发送给了writer,艾玛我去,真是绕啊。writer是什么呢?

var writer: ActorRef = createWriter()
private def createWriter(): ActorRef = {
    context.watch(context.actorOf(RARP(context.system).configureDispatcher(EndpointWriter.props(
      handleOrActive = currentHandle,
      localAddress = localAddress,
      remoteAddress = remoteAddress,
      refuseUid,
      transport = transport,
      settings = settings,
      AkkaPduProtobufCodec,
      receiveBuffers = receiveBuffers,
      reliableDeliverySupervisor = Some(self))).withDeploy(Deploy.local), "endpointWriter"))
  }

很显然这又是一个ACor!!!哎,继续查找EndpointWriter这个Actor喽

def receive = if (handle.isEmpty) initializing else writing
val writing: Receive = {
    case s: Send ⇒
      if (!writeSend(s)) {
        enqueueInBuffer(s)
        scheduleBackoffTimer()
        context.become(buffering)
      }

    // We are in Writing state, so buffer is empty, safe to stop here
    case FlushAndStop ⇒
      flushAndStop()

    case AckIdleCheckTimer if ackDeadline.isOverdue() ⇒
      trySendPureAck()
  }

这个Actor会先判断是否已经初始化,这里就假设初始化吧,初始化之后就会进入writing这个偏函数,对send类型的消息,又调用了writeSend函数。

Akka源码分析-Remote-发消息第3张

这个函数简单来看,就是调用codec对消息进行序列化,然后创建了一个pdu,最终把pdu通过handle的write发送出去。handle又是什么呢?

var handle: Option[AkkaProtocolHandle] = handleOrActive
private[remote] class AkkaProtocolHandle(
  _localAddress:          Address,
  _remoteAddress:         Address,
  val readHandlerPromise: Promise[HandleEventListener],
  _wrappedHandle:         AssociationHandle,
  val handshakeInfo:      HandshakeInfo,
  private val stateActor: ActorRef,
  private val codec:      AkkaPduCodec)
  extends AbstractTransportAdapterHandle(_localAddress, _remoteAddress, _wrappedHandle, AkkaScheme) {

  override def write(payload: ByteString): Boolean = wrappedHandle.write(codec.constructPayload(payload))

  override def disassociate(): Unit = disassociate(Unknown)

  def disassociate(info: DisassociateInfo): Unit = stateActor ! DisassociateUnderlying(info)
}

handle最终是一个AkkaProtocolHandle,这个对象我们不再具体分析,我们可以认为这是一个本地与远程地址链接的通道,通过这个通道就可以与远程actor发送消息了。

分析到这个地方,actorSelection与远程通信的过程大概就梳理清楚了。为了方便理解,作者特意辛苦的画了一个流程图,以供参考。细心的读者一定会问,那我的消息通过handle发送出去了,对方怎么接收呢?接收之后怎么发送到指定actor的邮箱呢?这一点我们后面再分析。

Akka源码分析-Remote-发消息第4张

actorSelection分析清楚了,剩下的就是通过ActorRef发送消息了。那么如何得到远程Actor的ActorRef呢?当然是“问”它了啊,怎么“问”呢?发消息啊。发什么消息呢?

/**
 * A message all Actors will understand, that when processed will reply with
 * [[akka.actor.ActorIdentity]] containing the `ActorRef`. The `messageId`
 * is returned in the `ActorIdentity` message as `correlationId`.
 */
@SerialVersionUID(1L)
final case class Identify(messageId: Any) extends AutoReceivedMessage with NotInfluenceReceiveTimeout

官网对Identify的注释非常清楚,这个消息继承了AutoReceivedMessage,所有的Actor都理解该消息,且受到该消息后会返回akka.actor.ActorIdentity消息,里面包含当前Actor的ActorRef。那么所有的Actor为啥都理解该消息呢?

//Memory consistency is handled by the Mailbox (reading mailbox status then processing messages, then writing mailbox status
  final def invoke(messageHandle: Envelope): Unit = {
    val influenceReceiveTimeout = !messageHandle.message.isInstanceOf[NotInfluenceReceiveTimeout]
    try {
      currentMessage = messageHandle
      if (influenceReceiveTimeout)
        cancelReceiveTimeout()
      messageHandle.message match {
        case msg: AutoReceivedMessage ⇒ autoReceiveMessage(messageHandle)
        case msg                      ⇒ receiveMessage(msg)
      }
      currentMessage = null // reset current message after successful invocation
    } catch handleNonFatalOrInterruptedException { e ⇒
      handleInvokeFailure(Nil, e)
    } finally {
      if (influenceReceiveTimeout)
        checkReceiveTimeout // Reschedule receive timeout
    }
  }

  def autoReceiveMessage(msg: Envelope): Unit = {
    if (system.settings.DebugAutoReceive)
      publish(Debug(self.path.toString, clazz(actor), "received AutoReceiveMessage " + msg))

    msg.message match {
      case t: Terminated              ⇒ receivedTerminated(t)
      case AddressTerminated(address) ⇒ addressTerminated(address)
      case Kill                       ⇒ throw ActorKilledException("Kill")
      case PoisonPill                 ⇒ self.stop()
      case sel: ActorSelectionMessage ⇒ receiveSelection(sel)
      case Identify(messageId)        ⇒ sender() ! ActorIdentity(messageId, Some(self))
    }
  }  

如果读者看过我之前分析的文章对上面的代码一定还有印象,它是ActorCell里面处理消息的两个函数,invoke会先判断消息类型是不是AutoReceivedMessage,如果是就自己处理了,不会去调用开发者自定义的receive函数。而Identify属于AutoReceivedMessage,收到后给sender发送了ActorIdentity消息,该消息的第二个参数是当前Actor的ActorFef变量。这样本地的actor收到远程actor返回的ActorIdentity,就可以通过对方的ActorRef给它发送消息了。当然本地actor收到的ActorIdentity消息中,第二个参数应该是一个RemoteActorRef类型。如何通过RemoteActorRef发送消息,上文已经分析清楚了,其实actorSelection最终也是通过远程actor的ActorPath创建了对应的RemoteActorRef,来发送消息的。

至此给远程actor发消息的两种方法就讲解完毕了。其实还有第三种方式,就是在本地创建一个远程Actor,当然了最终还是需要通过RemoteActorRef发消息的,这个具体就不再详细介绍了。

免责声明:文章转载自《Akka源码分析-Remote-发消息》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇EcShop二次开发系列教程–用户注册单麦克风AI降噪模块及解决方案下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

VS环境下用thrift-C/C++接口开发hbase应用

一、前言 用C/C++开发hbase应用,需要用到thrift接口。在windows平台使用Visual Studio时,要比在linux平台复杂一些,主要是因为一些依赖库无法做到自动安装(类似yum install或 apt-get install那样),其次是因为Linux本来就是hbase及其依赖库的原生平台。但总体而言,两个平台的过程大体相似。 开...

oracle jdk和openjdk区别;idea如何加载jdk源码并调试jdk代码

两个jdk的区别 oracle jdk是sun/oracle(甲骨文)公司的,部分jdk开源;相对比较稳定,使用的比较多。openjdk是完全开源的,据说是官方oracle唯一承认的开源版本。 idea如何调试jdk代码 首先oracle默认的源码包是不全的这是当前项目的CLASS_PATH和对应的源码路径(除了前两个zip包是自带的,其他都是我添加的)...

wireshark源码分析二

一、源代码结构 在wireshark源代码根目录下,可以看到以下子目录: 1)物理结构     其中,epan文件夹负责所有网络协议识别工作,plugins里面存放了wireshark所有插件,gtk文件夹里面是wireshark的界面部分代码,其余文件夹没有单独研究。 2)逻辑结构     下图给出了Ethereal功能模块:    a) GTK1/2...

C# 通过反射实现复杂对象的深拷贝(附源码)

背景   在C#中我们很多时候需要对一个对象进行深拷贝,当然如果已知当前对象类型的时候我们当然可以通过创建新对象逐一进行赋值的方式来进行操作,但是这种操作非常繁琐而且如果你在做一个顶层框架的时候要实现这样一个功能,并且深拷贝的方式复制的对象是一个object类型,这个时候这个方式就不再适用了,可能还有很多说可以通过序列化和反序列化的方式进行对象的深拷贝但还...

nodejs源码—初始化

概述 相信很多的人,每天在终端不止一遍的执行着node这条命令,对于很多人来说,它就像一个黑盒,并不知道背后到底发生了什么,本文将会为大家揭开这个神秘的面纱,由于本人水平有限,所以只是讲一个大概其,主要关注的过程就是node模块的初始化,event loop和v8的部分基本没有深入,这些部分可以关注一下我以后的文章。(提示本文非常的长,希望大家不要看烦~)...

主流RPC框架通讯协议实现原理与源码解析

主流RPC框架通讯协议实现原理与源码解析。互联网+的大环境下,用户量、数据量的急剧增长,使得单机系统不能承载更多的数据处理能力,从而催生了分布式技术的快速发展。 分布式RPC框架,已经有很多开源的高性能框架,例如Dubbo、GRpc、Spring Cloud,他们都是非常优秀的RPC框架。这个PPT主要是用来分析常见RPC框架的实现原理和源码解析,最后通...