ESP8266 SPI通信

摘要:
例如,ESP8266模组上,ESP8266EX芯片就是通过SPI接口与外接flash芯片连接的SPI作为一种总线通信方式,可以通过SPI接口连接多个从设备,并通过片选控制来选择对某一设备进行连接使用。基于ESP8266的NodeMcu具有HSPI,具有4个可用于SPI通信的引脚。该类库只提供了作为SPI主设备的API,其成员函数如下:1.begin()该功能用于初始化SPI通信。语法:SPI.begin()参数:无;返回值:无;2.end()该功能用于关闭SPI通信。

设备与设备之间的通信往往都伴随着总线的使用,而用得比较多的就当属于SPI总线和I2C总线,而恰巧NodeMcu也支持这两种总线通信

1. SPI总线——SPI类库的使用

SPI是串行外设接口(Serial Peripheral Interface)的缩写。是Motorola公司推出的一种同步串行接口技术,是一种高速的、全双工、同步的通信总线。通过它可以连接使用同样接口的外部设备。例如,ESP8266模组上,ESP8266EX芯片就是通过SPI接口与外接flash芯片连接的
SPI作为一种总线通信方式,可以通过SPI接口连接多个从设备,并通过片选控制来选择对某一设备进行连接使用。如下图所示:

ESP8266 SPI通信第1张

1.1 SPI总线概述

SPI的通信原理很简单,它是全双工主从通信方式,这种模式下通常有一个主设备和一个或者多个从设备(注意,同一时刻,只有一个主设备和一个从设备进行通信),需要至少4根线,特殊情况下(单向传输时)3根线也可以。

SPI的器件工作在SPI规定下的两种基本模式,即SPI主模式和SPI从模式。在一个SPI设备中,通常有如下表的几个引脚:

ESP8266 SPI通信第2张

主设备负责启动通信,负责输出时钟信号以及选择通信的从设备。当有多个从设备的时候,因为每个从设备上都有一个CS引脚接入到主设备中,当我们主设备和某个从设备通信时将需要将从设备的CS引脚电平设置为低电平或者高电平(根据实际情况而定)。数据的收发通过MISO和MOSI进行

1.2 NodeMcu SPI

NodeMcu的SPI(注意与HSPI区分)引脚(SD0-SD3、CLK、CMD)专门用于与ESP-12E的外接flash芯片进行Quad-SPI通信,因此不能用于SPI应用。

基于ESP8266的NodeMcu具有HSPI,具有4个可用于SPI通信的引脚(GPIO12-GPIO15)。通过这个SPI接口,我们可以将任何支持SPI的设备与NodeMcu连接起来,并与其进行通信

ESP8266 SPI通信第3张

知识扩展——标准SPI、Dual SPI和Quad-SPI

    1.标准SPI
    标准SPI通常就叫做SPI,它是一种串行外设接口规范,有4根引脚信号:clk、cs、mosi、miso;
    2.Dual SPI
    它只是针对SPI Flash而言,不是针对所有SPI外设。对于SPI Flash,全双工并不常用,因此扩展了mosi和miso的用法,让它们工作在半双工,用以加倍数据传输。也就是对于Dual SPI Flash,可以发送一个命令字节进入dual mode,这样mosi变成SIO0(serial io 0),mosi变成SIO1(serial io 1),这样一个时钟周期内就能传输2个bit数据,加倍了数据传输;
    3.Quad SPI
    与Dual SPI类似,也是针对SPI Flash,Quad SPI Flash增加了两根I/O线(SIO2,SIO3),目的是一个时钟内传输4个bit。所以可以理解为:在传输速度上,Quad SPI=2Dual SPI=4SPI。
所以对于SPI Flash,有标准spi flash,dual spi , quad spi 三种类型,分别对应3-wire, 4-wire, 6-wire,在相同clock下,线数越多,传输速率越高。
    温馨提示
    读者可以自行了解一下NodeMcu的flash是什么标准。说不定烧录代码失败就是因为这个原因(Flash模式是QIO或者DIO)

1.3 ESP8266 SPI类库成员函数

Arduino Core For ESP8266的SPI类库定义在SPI.h头文件中。该类库只提供了作为SPI主设备的API,其成员函数如下:

1.begin()
    该功能用于初始化SPI通信。
    语法:SPI.begin()
    参数:无;
    返回值: 无;

2.end()
    该功能用于关闭SPI通信。
    语法:SPI.end()
    参数:无;
    返回值: 无;

3.setBitOrder()
    设置数据传输顺序。
    语法:SPI.setBitOrder(order)
    参数:
        order,传输顺序,取值为:
        ~ LSBFIRST,低位在前;
        ~ MSBFIRST,高位在前。
    返回值: 无;

4.setClockDivider()
    设置通信时钟。时钟信号由主机产生,从机不用配置。但主机的SPI时钟频率应该在从机允许的处理速度范围内。
    语法:SPI.setClockDivider(divider)
    参数:
        divider,SPI通信的时钟是由系统时钟分频得到的。可使用的分频配置为:
        ~ SPI_CLOCK_DIV2,2分频;
        ~ SPI_CLOCK_DIV4,4分频(默认配置);
        ~ SPI_CLOCK_DIV8,8分频;
        ~ SPI_CLOCK_DIV16,16分频;
        ~ SPI_CLOCK_DIV32,32分频;
        ~ SPI_CLOC K_DIV64,64分频;
        ~ SPI_CLOCK_DIV128,128分频;
    返回值: 无;

5.setDataMode()
    该功能用于设置数据模式。
    语法:SPI.setDataMode(mode)
    参数:
        mode,可配置的模式,包括:
        ~ SPI_MODE0;
        ~ SPI_MODE1;
        ~ SPI_MODE2;
        ~ SPI_MODE3;
    返回值: 无;
    注意点:
    SPI四种模式中,SPI的相位(CPHA)和极性(CPOL)分别可以为0或者1,对应的4种组合构成了4种模式:
    ~ SPI_MODE0:CPOL=0,CPHA=0;
    ~ SPI_MODE1:CPOL=0,CPHA=1;
    ~ SPI_MODE2:CPOL=1,CPHA=0;
    ~ SPI_MODE3:CPOL=1,CPHA=1;
    时钟极性CPOL:即SPI空闲时,时钟信号SCLK的电平(1是空闲时高电平,0是空闲时低电平)。
    时钟相位CPHA:即SPI在SCLK第几个边沿开始采样(0是第一个边沿开始,1是第二个边沿开始)

6.transfer()
    该功能用于传输1B的数据,参数为发送的数据,返回值为接收到的数据。SPI是全双工通信,因此每发送1B的数据,也会接收到1B的数据。
    语法:SPI.transfer(val)
    参数:
        val,要发送的字节数据。
    返回值: 从机返回的1B数据;

7.transfer16()
    该功能用于传输2B的数据,参数为发送的数据,返回值为接收到的数据。
    语法:SPI.transfer16(val)
    参数:
        val,要发送的16位(uint16_t)数据。
    返回值: 从机返回的2B数据;
    注意点: 发送的uint16_t数据,其实底层也是分开两个字节分别发送两次,接收到的2B数据,也会重新组装成uint16_t数据;

8.transferBuf()
    该功能用于传输一个缓冲区数据,参数为发送的缓冲区buf。
    语法:SPI.transfer(buf,count)
    参数:
        buf,要发送的缓冲区(uint8_t*)数据。
        count,缓冲区的大小。
    返回值: 无;
    注意点: 虽然没有返回值,但是从从机传输回来的数据会替换掉buf缓冲区的数据,所以调用完整个方法之后,buf里面的数据就是从机返回的数据;

9.pins()
    该功能用于切换SPI引脚映射,需要在SPI.begin()之前调用SPI.pins(6,7,8,0)。
    语法:SPI.pins(sck, miso, mosi, ss)
    参数:
        sck,时钟引脚,固定为6;
        miso,主设备输入,从设备输出引脚,固定为7;
        mosi,主设备输出,从设备输入,固定为8;
        ss,使能信号引脚,固定为0。
    返回值: 无;

注意点: 通常情况下,ESP8266的SPI对应引脚为MOSI-GPIO13,MISO-GPIO12,SCLK-GPIO14,SS-GPIO15。如果在调用SPI.begin()之前调用SPI.pins(6,7,8,0),那么引脚映射就会变成MOSI-SD1,MISO-SD0,SCLK-CLK,HWCS-GPIO0。可以看出它们和ESP8266模块的外接Flash共享了SPI引脚。这个时候SPI的SS控制位就不是由我们的代码来控制,而是由系统硬件本身来调配,因为它必须确保外接Flash的优先级是最高的。在此,笔者不建议这么用

1.4 SPI寄存器

所有的SPI设置都由Arduino SPI控制寄存器(SPCR)来决定。这个寄存器就是微控制器内存的一个字节,它是可读写的。寄存器提供的服务通常有3类:控制、数据和状态。
    控制寄存器(SPCR)
    编码设置控制多种微控制器的功能。通常控制寄存器中的一个位影响某个特定的设置(学过单片机系统的读者应该比较了解这个,比如中断允许控制寄存器IE、中断优先级控制寄存器IP、定时器/计数器控制寄存器TCON等)。
    数据寄存器(SPDR)
    存储数据的寄存器,比如串行口锁存器SBUF,仅仅hold住了一个字节。比如,SPI数据寄存器hold住了要发往MOSI线的一个字节,或者这个数据是要从MISO线传入的。
    状态寄存器(SPSR)
    根据多种微控制器的条件改变其状态。比如,SPI状态寄存器(SPSR)的第七位被设置为1表示有数据从SPI传入或传出。
    在这里,我们主要讲解一下SPI控制寄存器(SPCR),一共有8位,每一个都控制了一种特定的SPI设置
ESP8266 SPI通信第4张

天子骄龙

免责声明:文章转载自《ESP8266 SPI通信》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇cookie的设置与销毁Matlab detectHarrisFeatures函数的使用下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

zigbee芯片cc2430资料

CC2430是一颗真正的系统芯片(SoC)CMOS解决方案。这种解决方案能够提高性能并满足以ZigBee为基础的2.4GHz ISM波段应用对低成本,低功耗的要求。它结合一个高性能2.4GHz DSSS(直接序列扩频)射频收发器核心和一颗工业级小巧高效的8051控制器。CC2430的设计结合了8Kbyte的RAM及强大的外围模块,并且有3种不同的版本,他们...

Unity应用架构设计(2)——使用中介者模式解耦ViewModel之间通信

当你开发一个客户端应用程序的时候,往往一个单页会包含很多子模块,在不同的平台下,这些子模块又被叫成子View(视图),或者子Component(组件)。越是复杂的页面,被切割出来的子模块就越多,子模块越多,彼此之间需要同步的数据和状态就越频繁,即易产生耦合。那么如何保证在复杂业务情况下,各个子模块之间可以随意通信并保持弱耦合关系,这正是本文所讨论的。 耦合...

Java线程间通信-回调的实现方式

Java线程间通信-回调的实现方式   Java线程间通信是非常复杂的问题的。线程间通信问题本质上是如何将与线程相关的变量或者对象传递给别的线程,从而实现交互。   比如举一个简单例子,有一个多线程的类,用来计算文件的MD5码,当多个这样的线程执行的时候,将每个文件的计算的结果反馈给主线程,并从控制台输出。   线程之间的通讯主要靠回调来实现,回调的概念说...

开源中间件大舞台

开源中间件大舞台 全文主要内容:一、中间件是什么?二、中间件的主要作用三、中间件的优越性四、中间件的应用领域与分类五、中间件的设计原则六、中间件的技术规范七、中间件的复杂性八、中间件的开发思路九、中间件的开源模式十、遵循J2EE的开源中间件十一、开源应用服务器比较最后:开源中间件将成为潮流   企业应用软件与桌面应用软件一样,是极为复杂的。企业应用软件具有...

彻底理解Android Binder通信架构

copy from : http://gityuan.com/2016/09/04/binder-start-service/ 基于Android 6.0的源码剖析, 本文深度剖析Binder IPC过程, 这绝对是一篇匠心巨作,从Java framework到Native,再到Linux Kernel,带你全程看Binder通信过程. 一. 引言 1.1...

NRF52805低功耗小体积BLE5.0系统级芯片

  nRF52805是NORDIC广受欢迎且经过验证的nRF52系列的第七款产品,支持蓝牙5.0,相当于nRF52810的costdown版本。  nRF52805带有具有出色能效(65 CoreMark/mA)并且功能强大(144 CoreMark)的64MHz 32位Arm® Cortex®-M4处理器,以及192KB闪存和24KB RAM。其多协议(...