用cart(分类回归树)作为弱分类器实现adaboost

摘要:
在前面的集成学习决策树中,我们讨论了决策树和集成学习的基本概念。后来,我们学习了决策树的分类原理以及adaboost的原理和实现。在上两篇文章中,我们了解了cart。决策分类树也是一种决策树,也是一种强分类器,但cart的深度太深。我们可以指定cart的深度,使cart成为一个强-弱分类器。Cart使用基尼系数来选择二进制特征,而adaboost通过改变样本的权重来实现弱分类器的迭代。我们如何将改变adaboost样品重量的想法整合到购物车中?

在之前的决策树到集成学习里我们说了决策树和集成学习的基本概念(用了adaboost昨晚集成学习的例子),其后我们分别学习了决策树分类原理adaboost原理和实现

上两篇我们学习了cart(决策分类树),决策分类树也是决策树的一种,也是很强大的分类器,但是cart的深度太深,我们可以指定cart的深度使得cart变成强一点的弱分类器。

决策树到集成学习我们提到,单棵复杂的决策树可以达到100%,而简单的集成学习只能有85%的正确率,下面我们尝试用强一点的弱分类器来看下集成学习的效果有没有提升。

首先我们要得到可以指定深度得到一棵cart(到达深度后直接多数表决,返回生成的cart)

 上两篇我们只是学习了cart的原理和实现,我们这里还需要实现如果用cart做预测,为了方便做预测,我们保存cart的时候,节点不在用特征的名称(例如这里的x,y),而是统一改成特征的下标,从0开始,并且节点加上了当前分支的阀值,例如下面的cart(当然,我们可以在最后画图的时候在特征名称转换过来)

下图左边是原始的cart,右边是指定深度的cart

用cart(分类回归树)作为弱分类器实现adaboost第1张用cart(分类回归树)作为弱分类器实现adaboost第2张

我们重新回顾一下adaboost的整体流程:

  1. 对数据集找到最优的弱分类器
  2. 用最优的分类器预测,记录预测结果,并相应修改样本的权重
  3. 重复上面两个步骤直到错误率为零或者到达最大的迭代次数

如何结合cart和adaboost呢?

cart采用的是gini系数来选择二分特征,而adaboost是通过改变样本的权重来实现弱分类器的迭代,如何将adaboost的改变样本权重的思想融合到cart中去呢?

尝试采用重复样本的方法提高样本的权重

下面直接看实现的代码吧,我觉得我的注释应该够详细了

# cart_adaboost.py
# coding:utf8
from itertools import *
import operator,time,math
import matplotlib.pyplot as plt
def calGini(dataSet):#计算一个数据集的gini系数
    numEntries = len(dataSet)
    labelCounts={}
    for featVec in dataSet: 
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    gini=1
    for label in labelCounts.keys():
        prop=float(labelCounts[label])/numEntries
        gini -=prop*prop
    return gini

def splitDataSet(dataSet, axis, value,threshold):#根据特征、特征值和方向划分数据集
    retDataSet = []
    if threshold == 'lt':
        for featVec in dataSet:
            if featVec[axis] <= value:
                retDataSet.append(featVec)
    else:
        for featVec in dataSet:
            if featVec[axis] > value:
                retDataSet.append(featVec)

    return retDataSet   
# 由于是连续值,如果还是两两组合的话,肯定爆炸
# 并且连续值根本不需要组合,只需要给定值,就可以从这个分开两份
# 返回最好的特征以及特征值
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1     
    bestGiniGain = 1.0; bestFeature = -1;bsetValue=""
    for i in range(numFeatures):        #遍历特征
        featList = [example[i] for example in dataSet]#得到特征列
        uniqueVals = list(set(featList))       #从特征列获取该特征的特征值的set集合
        uniqueVals.sort()
        for value in uniqueVals:# 遍历所有的特征值
            GiniGain = 0.0
            # 左增益
            left_subDataSet = splitDataSet(dataSet, i, value,'lt')
            left_prob = len(left_subDataSet)/float(len(dataSet))
            GiniGain += left_prob * calGini(left_subDataSet)
            # 右增益
            right_subDataSet = splitDataSet(dataSet, i, value,'gt')
            right_prob = len(right_subDataSet)/float(len(dataSet))
            GiniGain += right_prob * calGini(right_subDataSet)
            # print GiniGain
            if (GiniGain < bestGiniGain):      #比较是否是最好的结果
                bestGiniGain = GiniGain      #记录最好的结果和最好的特征
                bestFeature = i
                bsetValue=value
    return bestFeature,bsetValue                  

def majorityCnt(classList):#多数表决
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

# 这里用做生成弱分类器的cart
def createTree(dataSet,depth=3):#生成一棵指定深度的cart
    classList = [example[-1] for example in dataSet]
    if depth==0:#如果到达指定深度,直接多数表决
        return majorityCnt(classList)
    if classList.count(classList[0]) == len(classList): 
        return classList[0]#所有的类别都一样,就不用再划分了
    if len(dataSet) == 1: #如果没有继续可以划分的特征,就多数表决决定分支的类别
        return majorityCnt(classList)
    bestFeat,bsetValue = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel=str(bestFeat)+":"+str(bsetValue)#用最优特征+阀值作为节点,方便后期预测
    if bestFeat==-1:
        return majorityCnt(classList)
    myTree = {bestFeatLabel:{}}
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = list(set(featValues))
    # print bsetValue
    myTree[bestFeatLabel]['<='+str(round(float(bsetValue),3))] = createTree(splitDataSet(dataSet, bestFeat, bsetValue,'lt'),depth-1)
    myTree[bestFeatLabel]['>'+str(round(float(bsetValue),3))] = createTree(splitDataSet(dataSet, bestFeat, bsetValue,'gt'),depth-1)
    return myTree  


def translateTree(tree,labels):
    if type(tree) is not dict:
        return tree
    root=tree.keys()[0]
    feature,threshold=root.split(":")#取出根节点,得到最优特征和阀值
    feature=int(feature)
    myTree={labels[feature]:{}}
    for key in tree[root].keys():
        myTree[labels[feature]][key]=translateTree(tree[root][key], labels)
    return myTree
def predict(tree,sample):
    if type(tree) is not dict:
        return tree
    root=tree.keys()[0]
    feature,threshold=root.split(":")#取出根节点,得到最优特征和阀值
    feature=int(feature)
    threshold=float(threshold)
    if sample[feature]>threshold:#递归预测
        return predict(tree[root]['>'+str(round(float(threshold),3))], sample)
    else:
        return predict(tree[root]['<='+str(round(float(threshold),3))], sample)

#用cart对数据集做预测,
def cartClassify(dataMatrix,tree):
    errorList=ones((shape(dataMatrix)[0],1))# 返回预测对或者错,而不是返回预测的结果(对为0,错为1,方便计算预测错误的个数)
    predictResult=[]#记录预测的结果
    classList = [example[-1] for example in dataSet]
    for i in range(len(dataMatrix)):
        res=predict(tree,dataMatrix[i])
        errorList[i]=res!=classList[i]
        predictResult.append([int(res)] )
        # print predict(tree,dataMatrix[i]),classList[i]
    return errorList,predictResult

#记录弱分类器,主要调整样本的个数来达到调整样本权重的目的,训练弱分类器由createTree函数生成
def weekCartClass(dataSet,weiths,depth=3):
    min_weights = weiths.min()#记录最小权重
    newDataSet=[]
    for i in range(len(dataSet)):#最小权重样本数为1,权重大的样本对应重复math.ceil(float(array(weiths.T)[0][i]/min_weights))次
        newDataSet.extend([dataSet[i]]*int(math.ceil(float(array(weiths.T)[0][i]/min_weights))))
    bestWeekClass={}
    dataMatrix=mat(dataSet);
    m,n = shape(dataMatrix)
    bestClasEst = mat(zeros((m,1)))
    weekCartTree = createTree(newDataSet,depth)
    errorList,predictResult=cartClassify(dataSet, weekCartTree)
    weightedError = weiths.T*errorList#记录分错的权重之和
    bestWeekClass['cart']=weekCartTree
    return bestWeekClass,predictResult,weightedError

def CartAdaboostTrain(dataSet,num=1,depth=3):
    weekCartClassList=[]
    classList = mat([int(example[-1]) for example in dataSet])
    m=len(dataSet)
    weiths=mat(ones((m,1))/m) #初始化所有样本的权重为1/m
    finallyPredictResult = mat(zeros((m,1)))
    for i in range(num):
        bestWeekClass,bestPredictValue,error=weekCartClass(dataSet,weiths,depth)#得到当前最优的弱分类器
        alpha = float(0.5*log((1.0-error)/max(error,1e-16)))#根据error计算alpha
        bestWeekClass['alpha'] = alpha 
        expon = multiply(-1*alpha*mat(classList).T,bestPredictValue)
        weiths = multiply(weiths,exp(expon)) 
        weiths = weiths/weiths.sum()
        finallyPredictResult += alpha*mat(bestPredictValue)
        nowPredictError = multiply(sign(finallyPredictResult) != mat(classList).T,ones((m,1)))
        errorRate = nowPredictError.sum()/m
        print "total error: ",errorRate
        bestWeekClass['error_rate']=errorRate
        weekCartClassList.append(bestWeekClass)
        if errorRate == 0.0: break
    return weekCartClassList, finallyPredictResult


from treePlotter import createPlot
import numpy as np
from numpy import *
filename="sample"
dataSet=[];labels=[];
with open(filename) as f:
    for line in f:
        fields=line.strip("
").split("	")
        t=[float(item) for item in fields[0:-1]]
        t.append(int(fields[-1]))
        dataSet.append(t)
labels=['x','y']
weekCartClass, finallyPredictResult=CartAdaboostTrain(dataSet,10,4)
print finallyPredictResult.T

 下面我们看下实验的结果

由于完整的cart有8层,所以CartAdaboostTrain(dataSet,10,8),只需要一颗cart就可以100%的正确率

cart深度改为7,需要三棵cart

total error: 0.01
total error: 0.01
total error: 0.0

cart改为6,也是三棵cart,但是我们可以发现只有一棵cart的时候正确率是98%

total error:  0.02
total error:  0.02
total error:  0.0

cart改为5,同样也是三棵cart,但是我们可以发现只有一棵cart的时候正确率是95%

total error:  0.05
total error:  0.07
total error:  0.0

 cart改为4,这个时候需要5棵cart,同时我们可以发现只有一棵cart的时候正确率只有90%

total error:  0.1
total error:  0.1
total error:  0.06
total error:  0.05
total error:  0.0

 cart改为3,居然发现10棵cart还不行,居然需要12棵cart了,一开始的正确也只有89%

total error:  0.11
total error:  0.11
total error:  0.11
total error:  0.06
total error:  0.1
total error:  0.06
total error:  0.03
total error:  0.04
total error:  0.01
total error:  0.02
total error:  0.04
total error:  0.0

cart改为2时,cart的棵数到到了53棵才能达到100%的正确性,一开始的正确也只有86%

而cart改为1成为决策树墩的时候,用了200棵cart才达到95%的正确率

到这里我们可以说成功了实现了使用指定深度的cart作为弱分类器的可以调整cart深度和迭代次数的adaboost算法。

最后我们看下cart深度为3时,每棵cart的权重alpha值以及每个样本最后被预测的值,可以发现最后的预测值不是直接的-1和1,而是差异很大的一些值,这也算是集成学习和单纯决策树的一个区别吧

用cart(分类回归树)作为弱分类器实现adaboost第3张

1.05 0.43 0.54 0.6 0.57 0.68 0.57 0.71 0.66 0.33 0.59 0.53

[-4.22, -2.86, -4.22, -4.22, -4.22, -4.22, -3.97, -6.19, -6.19, -6.19, -5.1, -5.1, -5.1, -3.97, -3.97, -2.6, -1.46, -2.6, -2.82, -2.6, -2.0, -2.0, -2.0, -2.0, -2.0, -3.04, -2.75, -0.95, -2.75, -2.86, -2.86, -4.17, -2.86, -4.22, -4.22, -1.16, -0.98, -1.03, -2.82, -3.97, -2.0, -1.53, -0.85, -1.98, -1.16, -0.85, -0.85, -1.63, -0.99, -1.53, 4.25, 3.92, 2.89, 2.89, 2.64, 3.95, 3.95, 4.98, 4.47, 4.47, 4.47, 4.8, 4.47, 6.19, 6.19, 6.19, 5.1, 6.19, 1.45, 2.43, 4.8, 3.38, 1.45, 5.34, 4.15, 4.47, 1.58, 4.25, 2.56, 3.62, 3.62, 2.56, 4.98, 0.38, 0.51, 4.12, 2.64, 2.43, 4.47, 4.47, 4.47, 2.81, 0.38, 0.51, 1.45, 2.43, 3.83, 2.58, 4.17, -0.77]

免责声明:文章转载自《用cart(分类回归树)作为弱分类器实现adaboost》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇C++笔试使用Mybatis-Plus的一个坑下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

GBDT详解

GBDT(GradientBoostingDecisionTree)又叫MART(MultipleAdditiveRegressionTree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引...

算法分析-线性时间排序,决策树,计数排序,基数排序,桶排序【线性排序】

决策树引导       通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:       女儿:多大年纪了?       母亲:26。       女儿:长的帅不帅?       母亲:挺帅的。       女儿:收入高不?       母亲:不算很高,中等情况。       女儿:是公务员不?     ...

如何解决机器学习中数据不平衡问题(转)

作者:无影随想时间:2016年1月。出处:http://www.zhaokv.com/2016/01/learning-from-imbalanced-data.html 这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最...

数据挖掘中分类算法小结_数据分析师

数据挖掘中分类算法小结_数据分析师 数据仓库,数据库或者其它信息库中隐藏着许多可以为商业、科研等活动的决策提供所需要的知识。分类与预测是两种数据分析形式,它们可以用来抽取能够描述重要数据集合或预测未来数据趋势的模型。分类方法(Classification)用于预测数据对象的离散类别(Categorical Label);预测方法(Prediction )...

ML基础06-数据不平衡问题

0、什么是数据不平衡问题 在机器学习的分类问题中,不同类别的样本数据量存在差异。在某些场景,比如网页点击率预估(网页点击率低),购物推荐(浏览产生的购买少),信用卡欺诈,网络攻击识别等,这种差异可能会较大。传统的学习算法,对不同类别的数据一视同仁地处理,会产生在多数类样本效果较好,但是在少数类样本上效果差的问题。而在上述的四种场景中,我们更关注的是少数类的...

深度图像检测算法总结与对比(3)

3. Fast-R-CNN 基于R-CNN和SPP-Net思想,RBG提出了Fast-R-CNN算法。如果选用VGG16网络进行特征提取,在训练阶段,Fast-R-CNN的速度相比RCNN和SPP-Net可以分别提升9倍和3倍;在测试阶段,Fast-R-CNN的速度相比RCNN和SPP-Net可以分别提升213倍和10倍。 R-CNN和SPP-Net缺点:...