常见的聚类算法

摘要:
通用聚类算法1。K-Means聚类算法步骤:首先,我们选择一些类/组并随机初始化它们各自的中心点。下图说明了使用GMM的最大预期聚类过程。内聚分层聚类是一种自下而上的聚类算法。具有32个顶点的网络将有超过10^21种可能的聚类方法。
常见的聚类算法 1. K-Means(K均值)聚类

算法步骤:
(1) 首先我们选择一些类/组,并随机初始化它们各自的中心点。中心点是与每个数据点向量长度相同的位置。这需要我们提前预知类的数量(即中心点的数量)。
(2) 计算每个数据点到中心点的距离,数据点距离哪个中心点最近就划分到哪一类中。
(3) 计算每一类中中心点作为新的中心点。
(4) 重复以上步骤,直到每一类中心在每次迭代后变化不大为止。也可以多次随机初始化中心点,然后选择运行结果最好的一个。
下图演示了K-Means进行分类的过程:

常见的聚类算法第1张

优点:
速度快,计算简便
缺点:
我们必须提前知道数据有多少类/组。
K-Medians是K-Means的一种变体,是用数据集的中位数而不是均值来计算数据的中心点。
K-Medians的优势是使用中位数来计算中心点不受异常值的影响;缺点是计算中位数时需要对数据集中的数据进行排序,速度相对于K-Means较慢。

2. 均值漂移聚类

均值漂移聚类是基于滑动窗口的算法,来找到数据点的密集区域。这是一个基于质心的算法,通过将中心点的候选点更新为滑动窗口内点的均值来完成,来定位每个组/类的中心点。然后对这些候选窗口进行相似窗口进行去除,最终形成中心点集及相应的分组。
具体步骤:
1. 确定滑动窗口半径r,以随机选取的中心点C半径为r的圆形滑动窗口开始滑动。均值漂移类似一种爬山算法,在每一次迭代中向密度更高的区域移动,直到收敛。
2. 每一次滑动到新的区域,计算滑动窗口内的均值来作为中心点,滑动窗口内的点的数量为窗口内的密度。在每一次移动中,窗口会想密度更高的区域移动。
3. 移动窗口,计算窗口内的中心点以及窗口内的密度,知道没有方向在窗口内可以容纳更多的点,即一直移动到圆内密度不再增加为止。
4. 步骤一到三会产生很多个滑动窗口,当多个滑动窗口重叠时,保留包含最多点的窗口,然后根据数据点所在的滑动窗口进行聚类。
下图演示了均值漂移聚类的计算步骤:

常见的聚类算法第2张

下面显示了所有滑动窗口从头到尾的整个过程。每个黑点代表滑动窗口的质心,每个灰点代表一个数据点。

常见的聚类算法第3张

优点:(1)不同于K-Means算法,均值漂移聚类算法不需要我们知道有多少类/组。
(2)基于密度的算法相比于K-Means受均值影响较小。
缺点:(1)窗口半径r的选择可能是不重要的。

3. 基于密度的聚类方法(DBSCAN)

与均值漂移聚类类似,DBSCAN也是基于密度的聚类算法。
具体步骤:
1. 首先确定半径r和minPoints. 从一个没有被访问过的任意数据点开始,以这个点为中心,r为半径的圆内包含的点的数量是否大于或等于minPoints,如果大于或等于minPoints则改点被标记为central point,反之则会被标记为noise point。
2. 重复1的步骤,如果一个noise point存在于某个central point为半径的圆内,则这个点被标记为边缘点,反之仍为noise point。重复步骤1,知道所有的点都被访问过。
优点:不需要知道簇的数量
缺点:需要确定距离r和minPoints

4. 用高斯混合模型(GMM)的最大期望(EM)聚类

K-Means的缺点在于对聚类中心均值的简单使用。下面的图中的两个圆如果使用K-Means则不能作出正确的类的判断。同样的,如果数据集中的点类似下图中曲线的情况也是不能正确分类的。

常见的聚类算法第4张

使用高斯混合模型(GMM)做聚类首先假设数据点是呈高斯分布的,相对应K-Means假设数据点是圆形的,高斯分布(椭圆形)给出了更多的可能性。我们有两个参数来描述簇的形状:均值和标准差。所以这些簇可以采取任何形状的椭圆形,因为在x,y方向上都有标准差。因此,每个高斯分布被分配给单个簇。
所以要做聚类首先应该找到数据集的均值和标准差,我们将采用一个叫做最大期望(EM)的优化算法。下图演示了使用GMMs进行最大期望的聚类过程。

常见的聚类算法第5张

具体步骤:
1. 选择簇的数量(与K-Means类似)并随机初始化每个簇的高斯分布参数(均值和方差)。也可以先观察数据给出一个相对精确的均值和方差。
2. 给定每个簇的高斯分布,计算每个数据点属于每个簇的概率。一个点越靠近高斯分布的中心就越可能属于该簇。
3. 基于这些概率我们计算高斯分布参数使得数据点的概率最大化,可以使用数据点概率的加权来计算这些新的参数,权重就是数据点属于该簇的概率。
4. 重复迭代2和3直到在迭代中的变化不大。
GMMs的优点:(1)GMMs使用均值和标准差,簇可以呈现出椭圆形而不是仅仅限制于圆形。K-Means是GMMs的一个特殊情况,是方差在所有维度上都接近于0时簇就会呈现出圆形。
(2)GMMs是使用概率,所有一个数据点可以属于多个簇。例如数据点X可以有百分之20的概率属于A簇,百分之80的概率属于B簇。也就是说GMMs可以支持混合资格。

5. 凝聚层次聚类

层次聚类算法分为两类:自上而下和自下而上。凝聚层级聚类(HAC)是自下而上的一种聚类算法。HAC首先将每个数据点视为一个单一的簇,然后计算所有簇之间的距离来合并簇,知道所有的簇聚合成为一个簇为止。
下图为凝聚层级聚类的一个实例:

常见的聚类算法第6张

具体步骤:
1. 首先我们将每个数据点视为一个单一的簇,然后选择一个测量两个簇之间距离的度量标准。例如我们使用average linkage作为标准,它将两个簇之间的距离定义为第一个簇中的数据点与第二个簇中的数据点之间的平均距离。
2. 在每次迭代中,我们将两个具有最小average linkage的簇合并成为一个簇。
3. 重复步骤2知道所有的数据点合并成一个簇,然后选择我们需要多少个簇。
层次聚类优点:(1)不需要知道有多少个簇
(2)对于距离度量标准的选择并不敏感
缺点:效率低

6. 图团体检测(Graph Community Detection)

当我们的数据可以被表示为网络或图是,可以使用图团体检测方法完成聚类。在这个算法中图团体(graph community)通常被定义为一种顶点(vertice)的子集,其中的顶点相对于网络的其他部分要连接的更加紧密。下图展示了一个简单的图,展示了最近浏览过的8个网站,根据他们的维基百科页面中的链接进行了连接。

常见的聚类算法第7张

常见的聚类算法第8张

通过上述公式可以计算图的模块性,且模块性越高,该网络聚类成不同团体的程度越好,因此通过最优化方法寻找最大模块性就能发现聚类该网络的最佳方法。
组合学告诉我们对于一个仅有8个顶点的网络,就存在4140种不同的聚类方式,16个顶点的网络的聚类方式将超过100亿种。32个顶点的网络的可能聚类方式更是将超过10^21种。因此,我们必须寻找一种启发式的方法使其不需要尝试每一种可能性。这种方法叫做Fast-Greedy Modularity-Maximization(快速贪婪模块性最大化)的算法,这种算法在一定程度上类似于上面描述的集聚层次聚类算法。只是这种算法不根据距离来融合团体,而是根据模块性的改变来对团体进行融合。
具体步骤:
1. 首先初始分配每个顶点到其自己的团体,然后计算整个网络的模块性 M。
2. 第 1 步要求每个团体对(community pair)至少被一条单边链接,如果有两个团体融合到了一起,该算法就计算由此造成的模块性改变 ΔM。
3. 第 2 步是取 ΔM 出现了最大增长的团体对,然后融合。然后为这个聚类计算新的模块性 M,并记录下来。
4. 重复第 1 步和 第 2 步——每一次都融合团体对,这样最后得到 ΔM 的最大增益,然后记录新的聚类模式及其相应的模块性分数 M。
5. 重复第 1 步和 第 2 步——每一次都融合团体对,这样最后得到 ΔM 的最大增益,然后记录新的聚类模式及其相应的模块性分数 M。

 
 
 

免责声明:文章转载自《常见的聚类算法》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇C/C++ 开发一款多人聊天室Java引用总结--StrongReference、SoftReference、WeakReference、PhantomReference下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

(转)OpenCV 基本知识框架

以下是对《学习OpenCV》一书知识框架的简单梳理 转自:http://blog.chinaunix.net/uid-8402201-id-2899695.html 一、基础操作 1. 数据类型 数据结构了解 图像相关:cvArr cvMat IplImage 数据数组的维数, 与数据的通道数 见P46 (76) 2. 常见的矩阵操作熟悉 3. 数据的保...

R语言使用灰色关联分析(Grey Relation Analysis,GRA)中国经济社会发展指标

原文链接:http://tecdat.cn/?p=16881 灰色关联分析包括两个重要功能。第一项功能:灰色关联度,与correlation系数相似,如果要评估某些单位,在使用此功能之前转置数据。第二个功能:灰色聚类,如层次聚类。  灰色关联度 灰色关联度有两种用法。该算法用于测量两个变量的相似性,就像`cor`一样。如果要评估某些单位,可以转置数据集。...

离群点的检验

  离群点检测是发现与大部分其他对象显著不同的对象。大部分数据挖掘都将这种差异信息视为噪声而丢弃,然而在一些应用中,异常点数据可能蕴含着更大的研究价值。 应用:电信和信用卡的诈骗检测、贷款审批、电子商务、网络入侵和天气预报等领域。例如,可以利用离群点检测分析运动员的统计数据,来发现异常的运动员。 离群点的成因: 数据来源于不同的类、自然变异、数据测量、收集...

使用HDBSCAN 算法对分子聚类

对分子进行聚类分析,首先必须要考虑的是其描述符的问题,分子描述符通常是非常高维的,必须对其进行降维才好继续后面的分析,特别分子量特别大的时候。常用的降维手段有PCA,TSNE和UMAP.一说,TSNE用于可视化. 聚类的方法有许多,比如k-means,层次聚类. 但是这两个一个需要定义k,一个需要定义阈值,这样需要试错法合理进行着两个量的设置,不是很方便....

OpenCV-Python:K值聚类

关于K聚类,我曾经在一篇博客中提到过,这里简单的做个回顾。 KMeans的步骤以及其他的聚类算法   K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算   其他聚类算法:二分K-均值   讲解一下步骤,其实就是说明一下伪代码 随机选择k个点作为起始质心 当任意一个点的簇分配结果发生改变时...

XueTr(PC Hunter) pro 注册分析

原文防盗链地址:http://www.cnblogs.com/aj3423/p/3477042.html xuetr 介绍:http://www.epoolsoft.com/forum.php?mod=viewthread&tid=18&extra=page%3D1 xuetr pro 下载地址:http://down.epoolsoft....