Mnist

3层-CNN卷积神经网络预测MNIST数字

3层-CNN卷积神经网络预测MNIST数字 本文创建一个简单的三层卷积网络来预测 MNIST 数字。这个深层网络由两个带有 ReLU 和 maxpool 的卷积层以及两个全连接层组成。 MNIST 由 60000 个手写体数字的图片组成。本文的目标是高精度地识别这些数字。 具体实现过程 导入 tensorflow、matplotlib、random 和 n...

【学习笔记】卷积神经网络

目录 人工神经网络VS卷积神经网络 卷积神经网络CNN 卷积层 参数及结构 卷积输出值的计算 步长 外围补充与多Filter 总结输出大小 卷积网络API 新的激活函数-Relurule激活函数API Pooling计算Pooling API Mnist数据集卷积网络实现 人工神经网络VS卷积神经网络 参数太多,在cifar-...

Tensorflow实现MNIST手写数字识别

之前我们讲了神经网络的起源、单层神经网络、多层神经网络的搭建过程、搭建时要注意到的具体问题、以及解决这些问题的具体方法。本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神经网络的整个过程。 一 、MNIST手写数字数据集介绍 MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一,通常这个数据集都会被...

深度学习Tensorflow生产环境部署(下·模型部署篇)

前一篇讲过环境的部署篇,这一次就讲讲从代码角度如何导出pb模型,如何进行服务调用。 1 hello world篇 部署完docker后,如果是cpu环境,可以直接拉取tensorflow/serving,如果是GPU环境则麻烦点,具体参考前一篇,这里就不再赘述了。 cpu版本的可以直接拉取tensorflow/serving,docker会自动拉取late...

数字识别,神经网络

来源:https://www.numpy.org.cn/deep/basics/fit_a_line.html 数字识别 本教程源代码目录在book/recognize_digits,初次使用请您参考Book文档使用说明。 #说明: 硬件环境要求: 本文可支持在CPU、GPU下运行 Docker镜像支持的CUDA/cuDNN版本: 如果使用了Docke...

人工智能深度学习入门练习之(26)TensorFlow – 例子:人工神经网络(ANN)

人工神经网络(ANN)介绍 生物神经元 人脑有数十亿个神经元。神经元是人脑中相互连接的神经细胞,参与处理和传递化学信号和电信号。 以下是生物神经元的重要组成部分: 树突 – 从其他神经元接收信息的分支 细胞核 – 处理从树突接收到的信息 轴突 – 一种被神经元用来传递信息的生物电缆 突触 – 轴突和其他神经元树突之间的连接 人脑神经元处理信息的过程:...

在PyTorch中使用深度自编码器实现图像重建

作者|DR. VAIBHAV KUMAR 编译|VK 来源|Analytics In Diamag 人工神经网络有许多流行的变体,可用于有监督和无监督学习问题。自编码器也是神经网络的一个变种,主要用于无监督学习问题。 当它们在体系结构中有多个隐藏层时,它们被称为深度自编码器。这些模型可以应用于包括图像重建在内的各种应用。 在图像重建中,他们学习输入图像模式...

pytorch MNIST加载已下载的数据集出现问题及解决方法

importtorch importtorch.nn as nn from torch.autograd importVariable importtorchvision importtorch.utils.data as Data importmatplotlib.pyplot as plt DOWNLOAD_MNIST=False train_da...

微软开源自动机器学习工具NNI安装与使用

微软开源自动机器学习工具 – NNI安装与使用   在机器学习建模时,除了准备数据,最耗时耗力的就是尝试各种超参组合,找到最佳模型的过程了。对于初学者来说,常常是无从下手。即使是对于有经验的算法工程师和数据科学家,也是很难把握所有的规律,只能多次尝试,找到较好的超参组合。而自动机器学习这两年成为了热门领域,它将机器学习过程中包括自动特征提取、模型选择、参数...