ACE_Message_Block实现浅析

摘要:
ACE_ Message_ Block实现分析1.ACE_ Message_Block概述是ACE中的一个重要类,ACE框架中重要模式的实现,如ACE_ Reactor、ACE_ Proactor、ACE_ Stream、ACE_ Tasks等都密切相关。从另一个角度来看,ACE_Message_Block实际上是这些实现的重要部分。无论与框架的合作如何,ACE_Message_Block本身也是非常有用的

ACE_Message_Block实现浅析
1. 概述
ACE_Message_Block是ACE中很重要的一个类,和ACE框架中的重要模式的实现 如ACE_Reactor, ACE_Proactor, ACE_Stream, ACE_Task都有紧密的联系.

换个角度看,ACE_Message_Block实际上已经是这些实现中的重要组成部分.抛开和框架的配合不谈, ACE_Message_Block本身也相当有用,功能强大,用途广泛.ACE_Message_Block的实现中使用了很多技巧和模式,代表性的有GOF的composite模式.这让它在处理数据特别是网络数据时会很方便.而且, 在多线程开发中,它也可以充当线程之间传递的消息.

2. ACE_Message_Block的特点
ACE_Message_Block有几个重要特性:

1. ACE_Message_Block内部采用ACE_Data_Block来间接管理实际数据, 减轻了其它功能与实际内存管理之间的耦合.

2. ACE_Message_Block采用了引用计数, 可以灵活高效的共享数据, 并降低了内存拷贝带来的额外开销.

实际上, ACE_Message_Block本身并没有reference count, 而是间接的由ACE_Data_Block来提供.

3. 允许多条消息连接起来,形成一个单向链表, 从而支持复合消息Composite模式).

由此,ACE_Message_Block提供了cont()方法.

4. 允许将多条消息连接起来,形成一个双链表. 为ACE_Message_Queue的实现提供了支持.

由此,ACE_Message_Block提供next()和prev()方法.

5. 集成将同步策略和内存管理策略, 使得无需修改底层代码就能改变ACE_Message_Block的运行特征.


下面是自己总结的, 一开始总是混淆和迷惑的地方, 需要注意:

6. 3)4)特性实际上是正交的, 不存在交叉和冲突. 单链表实现复合消息, 双链表实现消息队列; 前者重内部, 后者重外部. 换个角度来说, 就是消息队列中的消息可以是复合消息.

7. ACE_Message_Block对内存空间的管理采用“谁申请谁释放”的策略.

在控制权转移时, 需要特别注意这一点.(空间的所有权可能会随size()方法的调用而转移)在使用外部的缓冲区构造ACE_Message_Block或者初始化时,需要特别注意.

3. ACE_Message_Block的数据管理
前面已经说明, 处于减少耦合的原因,ACE_Message_Block并不直接管理实际数据,而是委托ACE_Data_Block进行管理.因此, 对ACE_Data_Block的很多函数都有包裹调用:如base(), end(), mark()等等.

虽然ACE_Data_Block的管理很高效,但是,总体来说ACE_Data_Block并不关注”数据的有效性”.ACE_Data_Block只是简单的对空间进行管理, 提供起始地址.就像一个普通buffer.

ACE_Message_Block弥补了ACE_Data_Block的不足, 提供了读指针和写指针(内部实现为游标). 这样,用户可以方便的进行连续读写,代表性的例子是ACE_Message_Block的copy()方法.也为多个ACE_Message_Block复用相同的ACE_Data_Block提供了良好的支持.


ACE_Data_Block有两种方式获取空间:

1) 自行申请空间

2) 使用用户提供的空间

如果没有设定DONT_DELETE标志, ACE_Data_Block还能自动替用户来释放所管理的空间.

当使用栈上的缓冲区初始ACE_Data_Block时,要特别注意保证缓冲区的有效性,防止ACE_Data_Block使用无效指针.

4. ACE_Message_Block的构造和初始化
ACE_Message_Block提供了7个构造函数和3个初始化函数, 在实现中, 这些函数都不过是内部函数

init_i()函数的一个包裹.

4.1 init_i()的参数
init_i的参数有11个,不过大部分构造函数中调用时都设定了默认值.

int init_i (size_t size,
ACE_Message_Type type,
ACE_Message_Block *cont,
const char *data,
ACE_Allocator *allocator_strategy,
ACE_Lock *locking_strategy,
Message_Flags flags,
unsigned long priority,
const ACE_Time_Value &execution_time,
const ACE_Time_Value &deadline_time,
ACE_Data_Block *db,
ACE_Allocator *data_block_allocator,
ACE_Allocator *message_block_allocator);

参数

类型

用途说明

size

size_t

数据空间大小

type

ACE_Message_Type

消息类型

cont

ACE_Message_Block *

挂接其它MB以成为复合消息

data

const char *

data!=0 表示使用外部提供的空间
data==0 表示由ACE_Message_Block来分配所需空间

allocator_strategy

ACE_Allocator *

申请空间时, 使用的内存分配策略.

data==0时使用.

默认值ACE_Allocator::instance()

locking_strategy

ACE_Lock *

多线程下的安全策略

Message_Flags

flags

MB属性,用于判断是否要释放内部的ACE_Data_Block

当data!=0时,默认设置为DONT_DELETE

priority

unsigned long

优先级,默认为0

excute_time

const ACE_Time_Value&

暂不使用

deadline_time

const ACE_Time_Value&

暂不使用

db

ACE_Data_Block *

使用外部提供的

data_block_allocator

ACE_Allocator *

ACE_Data_Block的分配策略. db==0时使用

默认值ACE_Allocator::instance()

message_block_allocator

ACE_Allocator *

ACE_Message_Block的分配策略.

默认值ACE_Allocator::instance()

默认的ACE_Allocator::instance()返回ACE_New_Allocator类型的策略.

4.2 init_i()的实现
实现动作很简单, 主要是旧data_block的释放和再申请,至于用户要求的size大小的空间,则交由ACE_Data_Block去具体负责.


{
this->rd_ptr_ = 0;
this->wr_ptr_ = 0;
this->priority_ = priority;
this->cont_ = msg_cont;
this->next_ = 0;
this->prev_ = 0;
this->message_block_allocator_ = message_block_allocator;

if (this->data_block_ != 0)
{
this->data_block_->release ();
this->data_block_ = 0;
}

if (db == 0)
{
if (data_block_allocator == 0)
ACE_ALLOCATOR_RETURN (data_block_allocator, , ACE_Allocator::instance (), -1);

ACE_TIMEPROBE (ACE_MESSAGE_BLOCK_INIT_I_DB_ALLOC);

ACE_NEW_MALLOC_RETURN (db,
static_cast<ACE_Data_Block *> ( data_block_allocator->malloc (sizeof (ACE_Data_Block))),
ACE_Data_Block (size,
msg_type,
msg_data,
allocator_strategy,
locking_strategy,
flags,
data_block_allocator),
-1);

ACE_TIMEPROBE (ACE_MESSAGE_BLOCK_INIT_I_DB_CTOR);

if (db != 0 && db->size () < size)
{
db->ACE_Data_Block::~ACE_Data_Block();
data_block_allocator->free (db);
errno = ENOMEM;
return -1;
}
}

this->data_block (db);
return 0;
}

5. ACE_Message_Block的析构和释放
ACE_Message_Block的在析构之外还单独具备了一个release()函数,各有用途,不能相互替代.

1) ACE_Message_Block的析构函数不关心单向链(复合消息)的处理,只是把自己本身清理干净.

2) release()是个递归函数, 它会通过cont()访问所有链接的ACE_Message_Block, 依次对其进行清理,然后最后清理自己本身.清理的方式是ACE_DES_FREE,类似于delete this,但不完全一样.

3) 还有一个静态的releas(ACE_Message_Block*)函数,功能是一样的

由此也可以看出,在栈上生成的ACE_Message_Block,千万不能调用release(),否则会发生所谓的”fall off the stack”.

ACE的注释:


* release() is designed to release the continuation chain; the
* destructor is not. If we make the destructor release the
* continuation chain by calling release() or delete on the message
* blocks in the continuation chain, the following code will not
* work since the message block in the continuation chain is not off
* the heap:
*
* ACE_Message_Block mb1 (1024);
* ACE_Message_Block mb2 (1024);
*
* mb1.cont (&mb2);
*
* And hence, call release() on a dynamically allocated message
* block. This will release all the message blocks in the
* continuation chain. If you call delete or let the message block
* fall off the stack, cleanup of the message blocks in the
* continuation chain becomes the responsibility of the user.

所以如果一定要在栈上生成ACE_Message_Block,那么只能自己手动的清理内部的单向链了.
5.1 析构函数

析构函数很简单,主要是内部data_block的清理,注意是调用data_block()->release()

,因为ACE_Data_Block使用了引用计数.

ACE_Message_Block::~ACE_Message_Block (void)
{
ACE_TRACE ("ACE_Message_Block::~ACE_Message_Block");
if (ACE_BIT_DISABLED (this->flags_, ACE_Message_Block::DONT_DELETE) && this->data_block ())
this->data_block ()->release ();

this->prev_ = 0;
this->next_ = 0;
}

5.2 release()函数

ACE_Message_Block::release (void)
{
destroy_dblock = this->release_i (0);
if (destroy_dblock != 0)
{
ACE_Allocator *allocator = tmp->data_block_allocator ();
ACE_DES_FREE (tmp,
allocator->free,
ACE_Data_Block);
}

return 0;
}


这里省略了大部分线程策略处理,只保留了关键代码,可以看出,核心是release_i()函数.

int ACE_Message_Block::release_i (ACE_Lock *lock)
{
// Free up all the continuation messages.
if (this->cont_)
{
ACE_Message_Block *mb = this->cont_;
ACE_Message_Block *tmp = 0;

do
{
tmp = mb;
mb = mb->cont_;
tmp->cont_ = 0;

ACE_Data_Block *db = tmp->data_block ();
if (tmp->release_i (lock) != 0)
{
ACE_Allocator *allocator = db->data_block_allocator ();
ACE_DES_FREE (db,
allocator->free,
ACE_Data_Block);
}
}
while (mb);

this->cont_ = 0;
}

int result = 0;

if (ACE_BIT_DISABLED (this->flags_,
ACE_Message_Block::DONT_DELETE) &&
this->data_block ())
{
if (this->data_block ()->release_no_delete (lock) == 0)
result = 1;
this->data_block_ = 0;
}

if (this->message_block_allocator_ == 0)
delete this;
else
{
ACE_Allocator *allocator = this->message_block_allocator_;
ACE_DES_FREE (this,
allocator->free,
ACE_Message_Block);
}

return result;
}


处理也很清晰, 基本递归处理完所有的单链MB
6. ACE_Message_Block中容易混淆的几个函数
ACE_Message_Block中有多个获取大小或者长度的函数,容易混淆.
下图是根据ACE_Message_Block(实际是ACE_Data_Block)空间的处理状况所绘,能比较清晰的反应出它们的异同.
需要注意,为了表现出多样性,下图是wr_ptr(),rd_ptr(),size()都调用过之后的情景.

红色表示是ACE_Message_Block独有的函数, 其余则ACE_Message_Block和ACE_Data_Block均有.
矩形纸上函数的返回值均为指针类型,之下的返回值均为size_t类型.

函数

说明

length()

有效数据的长度

== wr_ptr() – rd_ptr()

size()

全部可用空间的长度,如果没有size()而变小,则等同capacity()

== mark() – base()

space()

剩余可用空间的长度

<= size() - length(),因为不含rd_ptr()移动过的空间

== mark() – wr_ptr()

capacity()

最大空间的长度(ACE_Message_Block构造或初始化时所用参数值)

== end() – base()

total_length()

复合消息(ACE_Message_Block内单向链 cont())的总长度

total_size()

复合消息(ACE_Message_Block内单向链 cont())的总大小

total_capacity()

复合消息(ACE_Message_Block内单向链 cont())的总空间大小

7. ACE_Message_Block常用函数简介
7.1 duplicate()
duplicate()浅拷贝函数,公用一个内部的ACE_Data_Block
ACE_Message_Block::duplicate() 与 ACE_Data_Block.duplicate()的实现是不同的.
ACE_Data_Block::duplicate()简单的只是将自身的reference加+1, 然后返回自身(this)
ACE_Message_Block:duplicate()则将自身copy了一份, 然后将自身的状态值赋给拷贝,注意它们公用同一个data_block.而且ACE_Message_Block::duplicate()支持复合消息,它会检查内部单向链,来依次调用其duplicate().

这里ACE_Data_Block::duplicate()的函数行为很怪异,以后就能看出它怪异行为的影响.说实话,这个地方如此设计我很不理解,因为ACE_Data_Block本身其实已经有reference了.

7.2 clone()
ACE_Message_Block::clone()深拷贝, 不但拷贝自身,内部的ACE_Data_Block也一并拷贝了,并且支持复合消息.

7.3 size()
ACE_Data_Block.size(size_t len)函数, 动态的变化ACE_Data_Block持有的空间.
ACE_Message_Block.size(size_t len)函数是ACE_Data_Block.size(size_t len)的简单包裹.
如果len比现有的尺寸小, 简单的cur_size_ = length;
如果len比现有的尺寸大, 会申请新的空间并拷贝原所有数据.

注意! 这里可能会发生空间控制权的转换! 即标志位DONT_DELETE的变化.若原ACE_Data_Block使用托管空间, 则此时会更替为自己申请的空间,从而拥有了控制权, 所以此时要注意原有空间的管理.
对ACE_Message_Block和ACE_Data_Block, 除非主动调用size(), 否则它们不会自动申请和扩大空间.

7.4 其它函数
ACE_Message_Block::crunch() 将现有数据移动到现有的缓冲的开始.

ACE_Message_Block::reset()将现有读写指针赋为初始值(ACE_Data_Block.base())

ACE_Message_Block::base()是对ACE_Data_Block.base()的简单包裹

8. 需要注意的地方
8.1 注意点1
1)ACE_Message_Block的构造函数中,如果data为NULL, 则ACE_Message_Block会为其自动分配空间. 但如data非NULL,则ACE_Message_Block会直接引用data指向的空间, 并不会进行新的空间分配和拷贝.

所以需要特别注意, 在ACE_Message_Block的实例没有销毁之前,不能释放data指向的空间.

2)虽然ACE_Message_Block会根据size的值来更改自己的size(),但wr_ptr不会根据data的长度进行设置, 造成length()的返回为0.

需要特别注意, 当构造一个ACE_Message_Block实例后, 随之需要追加数据时,必须设置wr_ptr的值,否则原有数据将会被覆写.

此时的含义是: ACE_Message_Block代管了data缓冲区,但不负责缓冲区的空间管理(因为也不是由它申请的).

8.2 注意点2
默认定义的flag: enum { DONT_DELETE = 01, USER_FLAGS = 0x1000 }

1) set_flags()、clr_flags()是对ACE_Message_Block中的数据指针(ACE_Data_Block*)进行设置.

2) set_self_flags(),clr_self_flags()是对ACE_Message_Block本身进行设置.

8.3 注意点3
ACE_Message_Block::copy(const char* buf) 函数将字符串copy到ACE_Message_Block, 如果内在空间不足, 将会返回-1.

需要特别注意, copy的数据将包括末尾的0, 也就是copy的数据长度为strlen(buf)+1.

而且, 会自动进行wr_ptr()的设置

9. ACE_Data_Block的思考
ACE_Data_Block的析构函数是释放持有空间base_的惟一路径(size()的情况不讨论).

ACE_Data_Block中通过duplicate()递增引用计数. ACE_Data_Block中通过release()递减引用计数, 当引用计数为0时,先调用ACE_Data_Block析构函数,然后释放ACE_Data_Block自身.
注意, ACE_Data_Block的构造和析构函数都不知道引用计数的存在. 在构造函数中, 只是设置了初始值1.

ACE_Data_Block一个很奇怪的地方就是ACE_Data_Block::duplicate()的实现, 并没有创建新的拷贝, 而仅仅是返回了自身(return this). 这中实现方式带来了很多奇怪的问题.如下面的2,3.
release()-> release_no_delete()->release_i()->~ACE_Data_Block()

如果在Stack上构造ACE_Data_Block,那么不能使用release()函数, 因为release()函数会试图删除this

如果在stack上构造ACE_Data_Block, 那么不能使用duplicate()函数, 因为duplicate()返回的是this指针, 栈中的ACE_Data_Block析构后会导致问题.

如果在heap上构造ACE_Data_Block,那么尽量使用release()来替代delete, 如果存在因为析构并不处理reference count, delete时不考虑其它会导致指针悬空.

免责声明:文章转载自《ACE_Message_Block实现浅析》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇c++ win32 遍历进程列表jmeter—— vars 和 props 用法下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

OHC Java堆外缓存详解与应用

1、背景   在当前微服务体系架构中,有很多服务例如,在 特征组装 与 排序等场景都需要有大量的数据支撑,快速读取这些数据对提升整个服务于的性能起着至关重要的作用。   缓存在各大系统中应用非常广泛。尤其是业务程序所依赖的数据可能在各种类型的数据库上(mysql、hive 等),那么如果想要获取到这些数据需要通过网络来访问。再加上往往数据量又很庞大,网络传...

spark内存管理详解

Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色。理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优。本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨。本文中阐述的原理基于 Spark 2.1 版本,阅读本文需要读者有一定的 Spark 和...

C# 以GZip解压缩

以GZip解压缩,这个在某次解析某站数据的时候用到了,保存留念 public static string GZipDecompressString(this string zippedString) { if (string.IsNullOrEmpty(zippedString) || zippedS...

sql server 数据类型

摘自:http://www.cnblogs.com/zhangwei595806165/archive/2012/02/23/2364746.html 1. 字符数据类型 字符数据类型包括varchar、char、nvarchar、nchar、text以及ntext。这些数据类型用于 存储字符数据。varchar和char类型的主要区别是数据填充。如果有一...

Linux12-内存管理

Linux内核第12章 内核不能像用户空间那样奢侈地使用内存,内核与用户空间不同,它不具备这种能力,它不支持简单便捷的内存分配方式。比如,内核一般不能睡眠,此外处理内存分配错误对内核来说也很困难。正是因为这些限制和内存分配机制不能太复杂,所以在内核中获取内存要比在用户空间复杂得多。 12.1 页 内核把物理页作为内存管理的基本单位。尽管处理器的最小可寻址单...

oracle优化的几个简单步骤

数据库优化的讨论可以说是一个永恒的主题。资深的Oracle优化人员通常会要求提出性能问题的人对数据库做一个statspack,贴出数据库配置等等。还有的人认为要抓出执行最慢的语句来进行优化。但实际情况是,提出疑问的人很可能根本不懂执行计划,更不要说statspack了。而我认为,数据库优化,应该首先从大的方面考虑:网络、服务器硬件配置、操作系统配置、Ora...