各种字符串Hash函数(转)

摘要:
template<classT>size_ tSDBMHash{registersize_thash=0;而{hash=65599*hash+ch;//hash=ch++-hash;}returnhash;}//@BriefRSHashFunction//@detail以Robert Sedgwicks在《C中的算法》一书中的名字命名。template<classT>size_ tAPHash{registersize_thash=0;size_tch;for{if{hash ^=;}else{hash^=;}}returnhash;}///@BriefJSHashFunction//Justin Sobel(Str)发明的哈希算法//这是我自己添加的,以确保空字符串返回的哈希值为0return0;寄存器ze_ thash=5381;而{hash+=+ch;}returnhash;}///@BriefDJBHashFunction2//@detail丹尼尔·J·伯恩斯坦发明的另一种哈希算法。
/// @brief BKDR Hash Function  
/// @detail 本 算法由于在Brian Kernighan与Dennis Ritchie的《The C Programming Language》一书被展示而得 名,是一种简单快捷的hash算法,也是Java目前采用的字符串的Hash算法(累乘因子为31)。  
template<class T>  
size_t BKDRHash(const T *str)  
{  
    register size_t hash = 0;  
    while (size_t ch = (size_t)*str++)  
    {         
        hash = hash * 131 + ch;   // 也可以乘以31、131、1313、13131、131313..  
        // 有人说将乘法分解为位运算及加减法可以提高效率,如将上式表达为:hash = hash << 7 + hash << 1 + hash + ch;  
        // 但其实在Intel平台上,CPU内部对二者的处理效率都是差不多的,  
        // 我分别进行了100亿次的上述两种运算,发现二者时间差距基本为0(如果是Debug版,分解成位运算后的耗时还要高1/3);  
        // 在ARM这类RISC系统上没有测试过,由于ARM内部使用Booth's Algorithm来模拟32位整数乘法运算,它的效率与乘数有关:  
        // 当乘数8-31位都为1或0时,需要1个时钟周期  
        // 当乘数16-31位都为1或0时,需要2个时钟周期  
        // 当乘数24-31位都为1或0时,需要3个时钟周期  
        // 否则,需要4个时钟周期  
        // 因此,虽然我没有实际测试,但是我依然认为二者效率上差别不大          
    }  
    return hash;  
}  
/// @brief SDBM Hash Function  
/// @detail 本算法是由于在开源项目SDBM(一种简单的数据库引擎)中被应用而得名,它与BKDRHash思想一致,只是种子不同而已。  
template<class T>  
size_t SDBMHash(const T *str)  
{  
    register size_t hash = 0;  
    while (size_t ch = (size_t)*str++)  
    {  
        hash = 65599 * hash + ch;         
        //hash = (size_t)ch + (hash << 6) + (hash << 16) - hash;  
    }  
    return hash;  
}  
/// @brief RS Hash Function  
/// @detail 因Robert Sedgwicks在其《Algorithms in C》一书中展示而得名。  
template<class T>  
size_t RSHash(const T *str)  
{  
    register size_t hash = 0;  
    size_t magic = 63689;     
    while (size_t ch = (size_t)*str++)  
    {  
        hash = hash * magic + ch;  
        magic *= 378551;  
    }  
    return hash;  
}  
/// @brief AP Hash Function  
/// @detail 由Arash Partow发明的一种hash算法。  
template<class T>  
size_t APHash(const T *str)  
{  
    register size_t hash = 0;  
    size_t ch;  
    for (long i = 0; ch = (size_t)*str++; i++)  
    {  
        if ((i & 1) == 0)  
        {  
            hash ^= ((hash << 7) ^ ch ^ (hash >> 3));  
        }  
        else  
        {  
            hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));  
        }  
    }  
    return hash;  
}  
/// @brief JS Hash Function  
/// 由Justin Sobel发明的一种hash算法。  
template<class T>  
size_t JSHash(const T *str)  
{  
    if(!*str)        // 这是由本人添加,以保证空字符串返回哈希值0  
        return 0;  
    register size_t hash = 1315423911;  
    while (size_t ch = (size_t)*str++)  
    {  
        hash ^= ((hash << 5) + ch + (hash >> 2));  
    }  
    return hash;  
}  
/// @brief DEK Function  
/// @detail 本算法是由于Donald E. Knuth在《Art Of Computer Programming Volume 3》中展示而得名。  
template<class T>  
size_t DEKHash(const T* str)  
{  
    if(!*str)        // 这是由本人添加,以保证空字符串返回哈希值0  
        return 0;  
    register size_t hash = 1315423911;  
    while (size_t ch = (size_t)*str++)  
    {  
        hash = ((hash << 5) ^ (hash >> 27)) ^ ch;  
    }  
    return hash;  
}  
/// @brief FNV Hash Function  
/// @detail Unix system系统中使用的一种著名hash算法,后来微软也在其hash_map中实现。  
template<class T>  
size_t FNVHash(const T* str)  
{  
    if(!*str)   // 这是由本人添加,以保证空字符串返回哈希值0  
        return 0;  
    register size_t hash = 2166136261;  
    while (size_t ch = (size_t)*str++)  
    {  
        hash *= 16777619;  
        hash ^= ch;  
    }  
    return hash;  
}  
/// @brief DJB Hash Function  
/// @detail 由Daniel J. Bernstein教授发明的一种hash算法。  
template<class T>  
size_t DJBHash(const T *str)  
{  
    if(!*str)   // 这是由本人添加,以保证空字符串返回哈希值0  
        return 0;  
    register size_t hash = 5381;  
    while (size_t ch = (size_t)*str++)  
    {  
        hash += (hash << 5) + ch;  
    }  
    return hash;  
}  
/// @brief DJB Hash Function 2  
/// @detail 由Daniel J. Bernstein 发明的另一种hash算法。  
template<class T>  
size_t DJB2Hash(const T *str)  
{  
    if(!*str)   // 这是由本人添加,以保证空字符串返回哈希值0  
        return 0;  
    register size_t hash = 5381;  
    while (size_t ch = (size_t)*str++)  
    {  
        hash = hash * 33 ^ ch;  
    }  
    return hash;  
}  
/// @brief PJW Hash Function  
/// @detail 本算法是基于AT&T贝尔实验室的Peter J. Weinberger的论文而发明的一种hash算法。  
template<class T>  
size_t PJWHash(const T *str)  
{  
    static const size_t TotalBits       = sizeof(size_t) * 8;  
    static const size_t ThreeQuarters   = (TotalBits  * 3) / 4;  
    static const size_t OneEighth       = TotalBits / 8;  
    static const size_t HighBits        = ((size_t)-1) << (TotalBits - OneEighth);      
      
    register size_t hash = 0;  
    size_t magic = 0;     
    while (size_t ch = (size_t)*str++)  
    {  
        hash = (hash << OneEighth) + ch;  
        if ((magic = hash & HighBits) != 0)  
        {  
            hash = ((hash ^ (magic >> ThreeQuarters)) & (~HighBits));  
        }  
    }  
    return hash;  
}  
/// @brief ELF Hash Function  
/// @detail 由于在Unix的Extended Library Function被附带而得名的一种hash算法,它其实就是PJW Hash的变形。  
template<class T>  
size_t ELFHash(const T *str)  
{  
    static const size_t TotalBits       = sizeof(size_t) * 8;  
    static const size_t ThreeQuarters   = (TotalBits  * 3) / 4;  
    static const size_t OneEighth       = TotalBits / 8;  
    static const size_t HighBits        = ((size_t)-1) << (TotalBits - OneEighth);      
    register size_t hash = 0;  
    size_t magic = 0;  
    while (size_t ch = (size_t)*str++)  
    {  
        hash = (hash << OneEighth) + ch;  
        if ((magic = hash & HighBits) != 0)  
        {  
            hash ^= (magic >> ThreeQuarters);  
            hash &= ~magic;  
        }         
    }  
    return hash;  
}  

我对这些hash的散列质量及效率作了一个简单测试,测试结果如下:

测试1:对100000个由大小写字母与数字随机的ANSI字符串(无重复,每个字符串最大长度不超过64字符)进行散列:

字符串函数冲突数除1000003取余后的冲突数

BKDRHash

04826

SDBMHash

24814

RSHash

24886

APHash

04846

ELFHash

15156120

JSHash

7795587

DEKHash

8635643

FNVHash

24872

DJBHash

8325645

DJB2Hash

6955309

PJWHash

15156120

测试2:对100000个由任意UNICODE组成随机字符串(无重复,每个字符串最大长度不超过64字符)进行散列:

字符串函数冲突数除1000003取余后的冲突数

BKDRHash

34710

SDBMHash

34904

RSHash

34822

APHash

24891

ELFHash

164869

JSHash

34812

DEKHash

14755

FNVHash

14803

DJBHash

14749

DJB2Hash

24817

PJWHash

164869

测试3:对1000000个随机ANSI字符串(无重复,每个字符串最大长度不超过64字符)进行散列:

字符串函数耗时(毫秒)

BKDRHash

109

SDBMHash

109

RSHash

124

APHash

187

ELFHash

249

JSHash

172

DEKHash

140

FNVHash

125

DJBHash

125

DJB2Hash

125

PJWHash

234

结论:也许是我的样本存在一些特殊性,在对ASCII码字符串进行散列时,PJW与ELF Hash(它们其实是同一种算法)无论是质量还是效率,都相当糟糕;例如:"b5"与“aE",这两个字符串按照PJW散列出来的hash值就是一样的。 另外,其它几种依靠异或来散列的哈希函数,如:JS/DEK/DJB Hash,在对字母与数字组成的字符串的散列效果也不怎么好。相对而言,还是BKDR与SDBM这类简单的Hash效率与效果更好。

其他

作者:icefireelf

出处:http://blog.csdn.net/icefireelf/article/details/5796529

各种字符串Hash函数比较

常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法。这些函数使用位运算使得每一个字符都对最后的函数值产生 影响。另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎不可能找到碰撞。

常用字符串哈希函数有 BKDRHash,APHash,DJBHash,JSHash,RSHash,SDBMHash,PJWHash,ELFHash等等。对于以上几种哈 希函数,我对其进行了一个小小的评测。

Hash函数数据1数据2数据3数据4数据1得分数据2得分数据3得分数据4得分平均分
BKDRHash20477448196.5510090.9582.0592.64
APHash23475449396.5588.4610051.2886.28
DJBHash22497547496.5592.31010083.43
JSHash14476150610084.6296.8317.9581.94
RSHash10486150510010051.5820.5175.96
SDBMHash32484950493.192.3157.0123.0872.41
PJWHash302648785130043.89021.95
ELFHash302648785130043.89021.95

其中数据1为100000个字母和数字组成的随机串哈希冲突个数。数据2为100000个有意义的英文句子哈希冲突个数。数据3为数据1的哈希值与 1000003(大素数)求模后存储到线性表中冲突的个数。数据4为数据1的哈希值与10000019(更大素数)求模后存储到线性表中冲突的个数。

经过比较,得出以上平均得分。平均数为平方平均数。可以发现,BKDRHash无论是在实际效果还是编码实现中,效果都是最突出的。APHash也 是较为优秀的算法。DJBHash,JSHash,RSHash与SDBMHash各有千秋。PJWHash与ELFHash效果最差,但得分相似,其算 法本质是相似的。

unsigned int SDBMHash(char *str)
{
    unsigned int hash = 0;
 
    while (*str)
    {
        // equivalent to: hash = 65599*hash + (*str++);
        hash = (*str++) + (hash << 6) + (hash << 16) - hash;
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// RS Hash Function
unsigned int RSHash(char *str)
{
    unsigned int b = 378551;
    unsigned int a = 63689;
    unsigned int hash = 0;
 
    while (*str)
    {
        hash = hash * a + (*str++);
        a *= b;
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// JS Hash Function
unsigned int JSHash(char *str)
{
    unsigned int hash = 1315423911;
 
    while (*str)
    {
        hash ^= ((hash << 5) + (*str++) + (hash >> 2));
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// P. J. Weinberger Hash Function
unsigned int PJWHash(char *str)
{
    unsigned int BitsInUnignedInt = (unsigned int)(sizeof(unsigned int) * 8);
    unsigned int ThreeQuarters    = (unsigned int)((BitsInUnignedInt  * 3) / 4);
    unsigned int OneEighth        = (unsigned int)(BitsInUnignedInt / 8);
    unsigned int HighBits         = (unsigned int)(0xFFFFFFFF) << (BitsInUnignedInt - OneEighth);
    unsigned int hash             = 0;
    unsigned int test             = 0;
 
    while (*str)
    {
        hash = (hash << OneEighth) + (*str++);
        if ((test = hash & HighBits) != 0)
        {
            hash = ((hash ^ (test >> ThreeQuarters)) & (~HighBits));
        }
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// ELF Hash Function
unsigned int ELFHash(char *str)
{
    unsigned int hash = 0;
    unsigned int x    = 0;
 
    while (*str)
    {
        hash = (hash << 4) + (*str++);
        if ((x = hash & 0xF0000000L) != 0)
        {
            hash ^= (x >> 24);
            hash &= ~x;
        }
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// BKDR Hash Function
unsigned int BKDRHash(char *str)
{
    unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
    unsigned int hash = 0;
 
    while (*str)
    {
        hash = hash * seed + (*str++);
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// DJB Hash Function
unsigned int DJBHash(char *str)
{
    unsigned int hash = 5381;
 
    while (*str)
    {
        hash += (hash << 5) + (*str++);
    }
 
    return (hash & 0x7FFFFFFF);
}
 
// AP Hash Function
unsigned int APHash(char *str)
{
    unsigned int hash = 0;
    int i;
 
    for (i=0; *str; i++)
    {
        if ((i & 1) == 0)
        {
            hash ^= ((hash << 7) ^ (*str++) ^ (hash >> 3));
        }
        else
        {
            hash ^= (~((hash << 11) ^ (*str++) ^ (hash >> 5)));
        }
    }
 
    return (hash & 0x7FFFFFFF);
}

转自:http://www.byvoid.com/blog/string-hash-compare/

免责声明:文章转载自《各种字符串Hash函数(转)》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇基于ASP.NET MVC(C#)和Quartz.Net组件实现的定时执行任务调度C#中的Session下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

Numpy---4.数组的存储和加载

一、二进制 1.numpy.save() numpy.save(file, arr, allow_pickle=True, fix_imports=True) 功能:将数组以二进制的形式存储到文件中 参数: file:文件名或者文件对象。如果是个文件名,则会自动添加后缀.npy如果没有该后缀的话 arr:被存储的数组 allow_pickle:一个...

Python面向对象之反射

一、补充 @classmethod 整个方法中没有用到对象命名空间中的名字,且用到了类的命名空间中的名字(普通方法和属性property除外) 类方法的默认参数:cls 调用这个发方法的类 类方法的调用方式:通过类名调用 通过类名调用的本质是方法 @statimethod 将一个普通函数放到类中来就给这个函数加一个@staticmethod装饰器 这个函...

python2/3中 将base64数据写成图片,并将图片数据转为16进制数据的方法、bytes/string的区别

1.python2将base64数据写成图片,并将数据转为16进制字符串的方法 import binascii img = u'R0lGODlhagAeAIcAAAAAAAAARAAAiAAAzABEAABERABEiABEzACIAACIRACIiACIzADMAADMRADMiADMzADd3REREQAAVQAAmQAA3QBVAABVVQ...

Python—模块

Python—模块 一、模块模块,是用一堆代码实现了某个功能的代码集合,模块分为三种:自定义模块(自己定义)、内置模块(python自带)、开源模块导入模块(1)、导入一个py文件,解释器解释该py文件(2)、导入一个包,解释器解释该包下的 __init__.py 文件 #模块导入import modulefrom module.xx import xxf...

Hive-学习总结(二)

四.HiveQL 查询 4.1select from 注意hive中有特殊的三种集合的形式 查询这三种类型时,hive会使用JSON语法输出,查询其中的元素方式如下 -- 数组 subordiantes[0] -- map deduction["State Taxes"] -- struct address.city 4.2 算数运算符 +,-,*,/,%...

VB.net基础知识

3.1 常量 3.1.1 什么是常量          在编程中,常常可以遇到变量和常量。顾名思义,变量就是值可以改变的量,常量是其值不可改变的量。          不可以改变的量有什么用呢?事实上,在实际编程中,常量用得很少。甚至可以用变量代替常量,当然这样做的代价是降低了程序的性能。          事实上,常量有很多用处。例如圆周率,如果每次需要...