深入分析三层网络交换机的原理和设计

摘要:
三层交换技术将交换技术引入网络层。三层交换机的应用也从原始网络中心的骨干层和汇聚层渗透到网络边缘的接入层。当然,三层交换技术并不是网络交换机和路由器的简单叠加,而是两者的有机结合,形成一个集成完整的解决方案。

转:https://blog.csdn.net/zqixiao_09/article/details/51170124

引言

    传统路由器在网络中起到隔离网络、隔离广播、路由转发以及防火墙的作业,并且随着网络的不断发展,路由器的负荷也在迅速增长。其中一个重要原因是出于安全和管理方便等方面的考虑,VLAN(虚拟局域网)技术在网络中大量应用。VLAN技术可以逻辑隔离各个不同的网段、端口甚至主机,而各个不同VLAN间的通信都要经过路由器来完成转发。由于局域网中数据流量很大,VLAN间大量的信息交换都要通过路由器来完成转发,这时候随着数据流量的不断增长路由器就成为了网络的瓶颈。为了解决局域网络的这个瓶颈,很多企业内部、学校和小区建设局域网时都采用了三层交换机。三层交换技术将交换技术引入到网络层,三层交换机的应用也从最初网络中心的骨干层、汇聚层一直渗透到网络边缘的接入层。

一、第三层交换技术

1、三层交换的概念

     第三层交换技术也称为IP交换技术或高速路由技术等,是相对于传统交换概念而提出的。众所周知,传统的交换技术是在OSI 网络标准模型中的第二层—数据链路层进行操作的,而第三层交换技术是在网络模型中的第三层实现了数据包的高速转发。简单地说,第三层交换技术就是:第二层交换技术+第三层转发技术,这是一种利用第三层协议中的信息来加强第二层交换功能的机制。一个具有第三层交换功能的设备是一个带有第三层路由功能的第二层交换机,但它是二者的有机结合,并不是简单地把路由器设备的硬件及软件简单地叠加在局域网交换机上。

2、三层交换的原理

      从硬件的实现上看,目前,第二层交换机的接口模块都是通过高速背板/总线交换数据的。在第三层交换机中,与路由器有关的第三层路由硬件模块也插接在高速背板/总线上,这种方式使得路由模块可以与需要路由的其他模块间高速地交换数据,从而突破了传统的外接路由器接口速率的限制(10Mbit/s---100Mbit/s)。在软件方面,第三层交换机将传统的基于软件的路由器重新进行了界定

    (1) 数据封包的转发:如IP/IPX封包的转发,这些有规律的过程通过硬件高速实现;

    (2) 第三层路由软件:如路由信息的更新、路由表维护、路由计算、路由的确定等功能,用优化、高效的软件实现。

    假设有两个使用IP协议的站点,通过第三层交换机进行通信的过程为:若发送站点A在开始发送时,已知目的站B的IP地址,但尚不知道它在局域网上发送所需要的MAC 地址,则需要采用地址解析(ARP)来确定B的MAC 地址。A把自己的IP 地址与B的IP 地址比较,采用其软件中配置的子网掩码提取出网络地址来确定B是否与自己在同一子网内。若B 与A 在同一子网内,A 广播一个ARP 请求,B 返回其MAC 地址,A 得到B 的MAC 地址后将这一地址缓存起来,并用此MAC 地址封包转发数据,第二层交换模块查找MAC 地址表确定将数据包发向目的端口。若两个站点不在同一子网内,则A 要向"缺省网关"发出ARP(地址解析)封包,而"缺省网关"的IP 地址已经在系统软件中设置,这个IP 地址实际上对应第三层交换机的第三层交换模块。当A 对"缺省网关"的IP 地址广播出一个ARP 请求时,若第三层交换模块在以往的通信过程中已得到B 的MAC 地址,则向发送站A 回复B 的MAC 地址;否则第三层交换模块根据路由信息向目的站广播一个ARP 请求,B 得到此ARP 请求后向第三层交换模块回复其MAC 地址,第三层交换模块保存此地址并回复给发送站A 。以后,当再进行A 与B 之间数据包转发时,将用最终的目的站点的MAC 地址封包,数据转发过程全部交给第二层交换处理,信息得以高速交换[1] 。

3、第三层交换的特点

      突出的特点如下:

(1).有机的硬件结合使得数据交换加速

(2).优化的路由软件使得路由过程效率提高;

(3).除了必要的路由决定过程外,大部分数据转发过程由第二层交换处理;

(4).多个子网互连时只是与第三层交换模块的逻辑连接,不象传统的外接路由器那样需增加端口,保护了用户的投资。

    第三层交换的目标是,只要在源地址和目的地址之间有一条更为直接的第二层通路,就没有必要经过路由器转发数据包。第三层交换使用第三层路由协议确定传送路径,此路径可以只用一次,也可以存储起来,供以后使用。之后数据包通过一条虚电路绕过路由器快速发送。

    第三层交换技术的出现,解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。当然,三层交换技术并不是网络交换机与路由器的简单叠加,而是二者的有机结合,形成一个集成的、完整的解决方案。


二、VLSW4150系列交换机

       VLSW4150 系列交换机是为企业提供的高性能、多层次化的解决方案。VLSW 4150也适用于ISP和服务提供商,尤其是对于一些大型的运营商,将能够增强其在IP市场的竞争力。

1、总体设计

     VLSW4150交换机有24个RJ45 10/100BASE-TX自适应端口,提供2个可选的光纤10/100BaseTx以太口、100BaseFx快速以太端口或者千兆以太网口(SX,LX,ZX),并另外提供一个串口和一个100M以太网口对交换机进行配置。
    VLSW4150交换机的体系结构可以支持最高到11Gbps的速率,多层交换速率达到6.6Mpps;可以支持8,192个MAC地址;为了更好的控制网络流量和网络安全,还支持以1M为步长的速率限制;支持TaggedVLAN和MAC-based的帧过滤以及RIP、OSPF和BGP路由协议。

    VLSW4150交换机提供堆栈技术可以以一个逻辑IP地址来管理多个交换机,并可在一个口上镜像其他的数据包,提供基于Web的网管系统以及CLI方式来调试交换机。VLSW4150支持SNMP协议、RMON和Telnet功能来便于管理。

2、硬件结构

    VLSW4150三层交换机的硬件结构分为两个部分,处理器模块和交换模块,它们之间通过PCI接口相连,同时配合相应的外围电路形成完整的三层交换机系统,见图1。

深入分析三层网络交换机的原理和设计第1张

    图1  硬件结构

 (1)处理器模块

    如图2所示,处理器部采用一款MOTOROLAPowerQUICCIICPU,同一些外部存储设备以及一些外围电路构成三层交换机的处理器部分。处理器模块主要是运行嵌入式操作系统,配置系统和路由表的维持,而不是数据转发通路的组成部分。CPLD 保存一些CPU初始化的一些配置以保证上电后CPU正常启动,Flash 芯片用于存储三层交换机的所需要的所有软件和相关配置,SDRAM在系统启动之后载入FLASH中的程序,保证系统正常运行。处理器模块一方面提供一个快速以太网接口和一个异步口,用于对交换机进行配置和调试;另一方面通过PCI接口和交换模块相连,通过PCI接口对交换模块进行控制,并进行数据传输[2] 。

深入分析三层网络交换机的原理和设计第2张


                                     图2  处理器模块的硬件组成

  (2)交换模块

    如图3所示,交换模块采用了BROADCOM公司的BCM5645作为ASIC芯片,通过PCI接口与处理器模块进行通信完成数据传输,通过5645提供的内存接口,可以给交换模块提供一个64M的外部SDRAM,从而提高交换机的吞吐量和交换速度。5645通过MII接口和GMII接口分别连接24个百兆以太网和2个千兆以太网[3]。

深入分析三层网络交换机的原理和设计第2张


    图3  交换模块的硬件组成


3、软件结构

    VLSW4150三层交换机的软件系统采用了模块化、分布式的设计方法,基于实时多任务操作系统。软件系统的结构呈层次结构,一层建立在另一层的基础上,每一层都使用近邻它的下一层所提供的服务,并且为它上面一层提供更高一级的服务,其优点是:可以向上层软件屏蔽底层操作,提高上层软件的可移植性,提高软件的可维护性。

    如图4所示,软件大体分为三个层面:

(1)驱动层

    驱动程序将上层软件和硬件系统进行了连接,把上层软件的路由更新、管理及配置命令转化为硬件系统所能识别的格式,从而达到更新其内部数据结构如路由表,地址表等,控制及管理硬件交换系统的目的;同时设备驱动程序把底层硬件收到的路由更新报文、控制管理帧及收到的各种信息传递给上层软件处理;

(2)协议栈

    实现了TCP/IP、802.1D和802.1Q等协议,为上层的应用程序提供良好的接口;

(3)应用层

    主要包括路由模块和网管模块,路由模块实现了RIP和OSPF等协议,即实现第三层路由的主要功能;网管模块实现了SNMP和RMON等网管模块,使三层交换机具有部分网管功能,保证三层交换机更好地正常运转。

深入分析三层网络交换机的原理和设计第4张


    图4  软件结构
   


三、第三层交换机的应用

    第三层交换机的主要用途是代替传统路由器作为网络的核心,因此,凡是没有广域连接需求,同时又需要路由器的地方,都可以用第三层交换机来代替。在企业网和校园网中,一般会将第三层交换机用在网络的核心层,用第三层交换机上的千兆端口或百兆端口连接不同的子网或VLAN。第三层交换机解决了局域网VLAN必须依赖路由器进行管理的局面,解决了传统路由器速度低、复杂所造成的网络瓶颈问题。利用三层交换机在局域网中划分VLAN,可以满足用户端多种灵活的逻辑组合,防止了广播风暴的产生,对不同 VLAN 之间可以根据需要设定不同的访问权限,以此增加网络的整体安全性,极大地提高网络管理员的工作效率,而且第三层交换机可以合理配置信息资源,降低网络配置成本,使得交换机之间连接变得灵活。

交换机开发(一)—— 交换机的工作原理

转:https://blog.csdn.net/zqixiao_09/article/details/51154368

一、交换机的工作原理

     当交换机收到数据时,它会检查它的目的MAC地址,然后把数据从目的主机所在的接口转发出去。交换机之所以能实现这一功能,是因为交换机内部有一个MAC地址表,MAC地址表记录了网络中所有MAC地址与该交换机各端口的对应信息。某一数据帧需要转发时,交换机根据该数据帧的目的MAC地址来查找MAC地址表,从而得到该地址对应的端口,即知道具有该MAC地址的设备是连接在交换机的哪个端口上,然后交换机把数据帧从该端口转发出去。

1.交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。
2.交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。
3.如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。这一过程称为泛洪(flood)。
4.广播帧和组播帧向所有的端口转发。

例:某网络如图1所示。

深入分析三层网络交换机的原理和设计第5张

                                                                         图1 交换机地址表

表1端口/MAC地址映射表

                MAC地址                   

           端口              

00-10-B5-4B-30-85

E0/1

00-10-B5-4B-30-90

E0/2

00-10-B5-4B-30-65

E0/24

假设主机pc1向主机pc7发送一个数据帧,该数据帧被送到交换机后,交换机首先查MAC地址表,发现主机pc7连接在E0/24接口上,就将数据帧从E0/24接口转发出去。

 

二、MAC地址表的构建过程

       为快速转发报文,以太网交换机需要建立和维护MAC地址表。交换机采用源MAC地址学习的方法建立MAC地址表。

(1)交换机初始状态

交换机的初始状态MAC地址表为空,如图2所示。

深入分析三层网络交换机的原理和设计第6张

                                                  图2 交换机地址表初始状态

 

(2)地址表源MAC地址学习

     当计算机PC1要发送数据帧给计算机PC6时,因此时地址表是空的,交换机将向除PC1连接端口E0/1以外的其他所有端口转发数据帧。在转发之前,首先检查该数据帧的源MAC地址(00-10-B5-4B-30-85),并在交换机的MAC地址表中添加一条记录(00-10-B5-4B-30-85,E0/1)使之和端口E0/1相对应。

(3)计算机PC6接收数据帧

    计算机PC6收到发送的数据帧后,用该数据帧的目的MAC地址和本机的MAC地址比较,发现PC1找的正是它,则接收该数据帧,其他计算机丢弃数据帧。

    计算机PC6回复PC1时,交换机直接从端口E0/1转发,并学习到(00-10-B5-4B-30-65)为PC6连接的端口,将其添加到地址表中,如图3所示。

深入分析三层网络交换机的原理和设计第7张

                                                           图3 地址表源MAC地址学习

 

       交换机的其他端口利用源MAC地址学习的方法在MAC地址表中不断添加新的MAC地址与端口号的对应信息。直到MAC地址表添加完整为止。

      为了保证MAC地址表中的信息能够实时地反映网络情况,每个学习到的记录都有一个老化时间,如果在老化时间内收到地址信息则刷新记录。对没有收到相应的地址信息的则删除该记录。例如,计算机PC6停止了和交换机通信,达到老化时间后,交换机会将其对应的记录从MAC地址表中删除。

      也可以手工添加交换机的MAC地址表的静态记录,手工配置的静态记录没有老化时间的限制。由于MAC地址表中对于同一个MAC地址只能有一条记录,所以如果手工配置了MAC地址和端口号对应关系后,交换机就不再动态学习这台计算机的MAC地址了。

 

 

三、交换机的三个主要功能 

a -- 学习

      以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中.

b -- 转发/过滤

  当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)

c -- 消除回路

      当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。

四、交换机的工作特性 

1.交换机的每一个端口所连接的网段都是一个独立的冲突域。 

2.交换机所连接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(惟一的例外是在配有VLAN的环境中)。 

3.交换机依据帧头的信息进行转发,因此说交换机是工作在数据链路层的网络设备(此处所述交换机仅指传统的二层交换设备)。

五、交换机的分类 

   依照交换机处理帧时不同的操作模式,主要可分为两类: 

a -- 存储转发

       交换机在转发之前必须接收整个帧,并进行错误校检,如无错误再将这一帧发往目的地址。帧通过交换机的转发时延随帧长度的不同而变化。 

b -- 直通式

      交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。

六、二、三、四层交换机对比

多种理解的说法:

1.

二层交换(也称为桥接)是基于硬件的桥接。基于每个末端站点的唯一MAC地址转发数据包。二层交换的高性能可以产生增加各子网主机数量的网络设计。其仍然有桥接所具有的特性和限制。

三层交换是基于硬件的路由选择。路由器和第三层交换机对数据包交换操作的主要区别在于物理上的实施。 

四层交换的简单定义是:不仅基于MAC(第二层桥接)或源/目的地IP地址(第三层路由选择),同时也基于TCP/UDP应用端口来做出转发决定的能力。其使网络在决定路由时能够区分应用。能够基于具体应用对数据流进行优先级划分。它为基于策略的服务质量技术提供了更加细化的解决方案。提供了一种可以区分应用类型的方法。

2.

二层交换机 基于MAC地址
三层交换机 具有VLAN功能 有交换和路由///基于IP,就是网络
四层交换机 基于端口,就是应用

3.

二层交换技术从网桥发展到VLAN(虚拟局域网),在局域网建设和改造中得到了广泛的应用。第二层交换技术是工作在OSI七层网络模型中的第二层,即数据链路层。它按照所接收到数据包的目的MAC地址来进行转发,对于网络层或者高层协议来说是透明的。它不处理网络层的IP地址,不处理高层协议的诸如TCP、UDP的端口地址,它只需要数据包的物理地址即MAC地址,数据交换是靠硬件来实现的,其速度相当快,这是二层交换的一个显著的优点。但是,它不能处理不同IP子网之间的数据交换。传统的路由器可以处理大量的跨越IP子网的数据包,但是它的转发效率比二层低,因此要想利用二层转发效率高这一优点,又要处理三层IP数据包,三层交换技术就诞生了。

三层交换技术的工作原理

第三层交换工作在OSI七层网络模型中的第三层即网络层,是利用第三层协议中的IP包的包头信息来对后续数据业务流进行标记,具有同一标记的业务流的后续报文被交换到第二层数据链路层,从而打通源IP地址和目的IP地址之间的一条通路。这条通路经过第二层链路层。有了这条通路,三层交换机就没有必要每次将接收到的数据包进行拆包来判断路由,而是直接将数据包进行转发,将数据流进行交换

下面看一下详细分析:

1、二层交换技术

      二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。

  具体的工作流程如下:

(1) 当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的;

(2) 再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;

(3) 如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上;

(4) 如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。

        不断的循环这个过程,对于全网的MAC地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。

从二层交换机的工作原理可以推知以下三点:

(1) 由于交换机对多数端口的数据进行同时交换,这就要求具有很宽的交换总线带宽,如果二层交换机有N个端口,每个端口的带宽是M,交换机总线带宽超过N×M,那么这交换机就可以实现线速交换;

(2) 学习端口连接的机器的MAC地址,写入地址表,地址表的大小(一般两种表示方式:一为BEFFER RAM,一为MAC表项数值),地址表大小影响交换机的接入容量;

(3) 还有一个就是二层交换机一般都含有专门用于处理数据包转发的ASIC(Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。由于各个厂家采用ASIC不同,直接影响产品性能。

以上三点也是评判二三层交换机性能优劣的主要技术参数,这一点请大家在考虑设备选型时注意比较。

2、路由技术

       路由器工作在OSI模型的第三层---网络层操作,其工作模式与二层交换相似,但路由器工作在第三层,这个区别决定了路由和交换在传递包时使用不同的控制信息,实现功能的方式就不同。工作原理是在路由器的内部也有一个表,这个表所标示的是如果要去某一个地方,下一步应该向那里走,如果能从路由表中找到数据包下一步往那里走,把链路层信息加上转发出去;如果不能知道下一步走向那里,则将此包丢弃,然后返回一个信息交给源地址。

     路由技术实质上来说不过两种功能:决定最优路由和转发数据包。路由表中写入各种信息,由路由算法计算出到达目的地址的最佳路径,然后由相对简单直接的转发机制发送数据包。接受数据的下一台路由器依照相同的工作方式继续转发,依次类推,直到数据包到达目的路由器。

    而路由表的维护,也有两种不同的方式。一种是路由信息的更新,将部分或者全部的路由信息公布出去,路由器通过互相学习路由信息,就掌握了全网的拓扑结构,这一类的路由协议称为距离矢量路由协议;另一种是路由器将自己的链路状态信息进行广播,通过互相学习掌握全网的路由信息,进而计算出最佳的转发路径,这类路由协议称为链路状态路由协议。

   由于路由器需要做大量的路径计算工作,一般处理器的工作能力直接决定其性能的优劣。当然这一判断还是对中低端路由器而言,因为高端路由器往往采用分布式处理系统体系设计。

3、三层交换技术

      近年来的对三层技术的宣传,耳朵都能起茧子,到处都在喊三层技术,有人说这是个非常新的技术,也有人说,三层交换嘛,不就是路由器和二层交换机的堆叠,也没有什么新的玩意,事实果真如此吗?下面先来通过一个简单的网络来看看三层交换机的工作过程。

     组网比较简单

     使用IP的设备A------------------------三层交换机------------------------使用IP的设备B

     比如A要给B发送数据,已知目的IP,那么A就用子网掩码取得网络地址,判断目的IP是否与自己在同一网段。

     如果在同一网段,但不知道转发数据所需的MAC地址,A就发送一个ARP请求,B返回其MAC地址,A用此MAC封装数据包并发送给交换机,交换机起用二层交换模块,查找MAC地址表,将数据包转发到相应的端口。

   如果目的IP地址显示不是同一网段的,那么A要实现和B的通讯,在流缓存条目中没有对应MAC地址条目,就将第一个正常数据包发送向一个缺省网关,这个缺省网关一般在操作系统中已经设好,对应第三层路由模块,所以可见对于不是同一子网的数据,最先在MAC表中放的是缺省网关的MAC地址;然后就由三层模块接收到此数据包,查询路由表以确定到达B的路由,将构造一个新的帧头,其中以缺省网关的MAC地址为源MAC地址,以主机B的MAC地址为目的MAC地址。通过一定的识别触发机制,确立主机A与B的MAC地址及转发端口的对应关系,并记录进流缓存条目表,以后的A到B的数据,就直接交由二层交换模块完成。这就通常所说的一次路由多次转发。

    以上就是三层交换机工作过程的简单概括,可以看出三层交换的特点:

a -- 由硬件结合实现数据的高速转发。

b -- 这就不是简单的二层交换机和路由器的叠加,三层路由模块直接叠加在二层交换的高速背板总线上,突破了传统路由器的接口速率限制,速率可达几十Gbit/s。算上背板带宽,这些是三层交换机性能的两个重要参数。

c -- 简洁的路由软件使路由过程简化。

d -- 大部分的数据转发,除了必要的路由选择交由路由软件处理,都是又二层模块高速转发,路由软件大多都是经过处理的高效优化软件,并不是简单照搬路由器中的软件。

简单总结:

     二层交换机用于小型的局域网络。这个就不用多言了,在小型局域网中,广播包影响不大,二层交换机的快速交换功能、多个接入端口和低谦价格为小型网络用户提供了很完善的解决方案。

     路由器的优点在于接口类型丰富,支持的三层功能强大,路由能力强大,适合用于大型的网络间的路由,它的优势在于选择最佳路由,负荷分担,链路备份及和其他网络进行路由信息的交换等等路由器所具有功能。

     三层交换机的最重要的功能是加快大型局域网络内部的数据的快速转发,加入路由功能也是为这个目的服务的。如果把大型网络按照部门,地域等等因素划分成一个个小局域网,这将导致大量的网际互访,单纯的使用二层交换机不能实现网际互访;如单纯的使用路由器,由于接口数量有限和路由转发速度慢,将限制网络的速度和网络规模,采用具有路由功能的快速转发的三层交换机就成为首选。

    一般来说,在内网数据流量大,要求快速转发响应的网络中,如全部由三层交换机来做这个工作,会造成三层交换机负担过重,响应速度受影响,将网间的路由交由路由器去完成,充分发挥不同设备的优点,不失为一种好的组网策略,当然,前提是客户的腰包很鼓,不然就退而求其次,让三层交换机也兼为网际互连。

4、四层交换机

  第四层交换的一个简单定义是:它是一种功能,它决定传输不仅仅依据MAC地址(第二层网桥)或源/目标IP地址(第三层路由),而且依据TCP/UDP(第四层)应用端口号。第四层交换功能就象是虚IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。

  在第四层交换中为每个供搜寻使用的服务器组设立虚IP地址(VIP),每组服务器支持某种应用。在域名服务器(DNS)中存储的每个应用服务器地址是VIP,而不是真实的服务器地址。

  当某用户申请应用时,一个带有目标服务器组的VIP连接请求(例如一个TCP SYN包)发给服务器交换机。服务器交换机在组中选取最好的服务器,将终端地址中的VIP用实际服务器的IP取代,并将连接请求传给服务器。这样,同一区间所有的包由服务器交换机进行映射,在用户和同一服务器间进行传输。

第四层交换的原理 

  OSI模型的第四层是传输层。传输层负责端对端通信,即在网络源和目标系统之间协调通信。在IP协议栈中这是TCP(一种传输协议)和UDP(用户数据包协议)所在的协议层。
  在第四层中,TCP和UDP标题包含端口号(portnumber),它们可以唯一区分每个数据包包含哪些应用协议(例如HTTP、FTP等)。端点系统利用这种信息来区分包中的数据,尤其是端口号使一个接收端计算机系统能够确定它所收到的IP包类型,并把它交给合适的高层软件。端口号和设备IP地址的组合通常称作“插口(socket)”。

  1和255之间的端口号被保留,他们称为“熟知”端口,也就是说,在所有主机TCP/IP协议栈实现中,这些端口号是相同的。除了“熟知”端口外,标准UNIX服务分配在256到1024端口范围,定制的应用一般在1024以上分配端口号.

   分配端口号的最近清单可以在RFc1700”Assigned Numbers”上找到。TCP/UDP端口号提供的附加信息可以为网络交换机所利用,这是第4层交换的基础。 

"熟知"端口号举例: 

应用协议         端口号 

FTP                         20(数据)
           21(控制)

TELNET                 23
SMTP                     25
HTTP                      80
NNTP                     119
NNMP                    16
                               162(SNMP traps) 

     TCP/UDP端口号提供的附加信息可以为网络交换机所利用,这是第四层交换的基础。

  具有第四层功能的交换机能够起到与服务器相连接的“虚拟IP”(VIP)前端的作用。

     每台服务器和支持单一或通用应用的服务器组都配置一个VIP地址。这个VIP地址被发送出去并在域名系统上注册。

  在发出一个服务请求时,第四层交换机通过判定TCP开始,来识别一次会话的开始。然后它利用复杂的算法来确定处理这个请求的最佳服务器。一旦做出这种决定,交换机就将会话与一个具体的IP地址联系在一起,并用该服务器真正的IP地址来代替服务器上的VIP地址。

  每台第四层交换机都保存一个与被选择的服务器相配的源IP地址以及源TCP端口相关联的连接表。然后第四层交换机向这台服务器转发连接请求。所有后续包在客户机与服务器之间重新影射和转发,直到交换机发现会话为止。

  在使用第四层交换的情况下,接入可以与真正的服务器连接在一起来满足用户制定的规则,诸如使每台服务器上有相等数量的接入或根据不同服务器的容量来分配传输流。

免责声明:文章转载自《深入分析三层网络交换机的原理和设计》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇Android测试:从零开始1——简介王颖奇 201771010129《面向对象程序设计(java)》第七周学习总结下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

如何让服务端同时支持WebSocket和SSL加密的WebSocket(即同时支持ws和wss)?

  自从HTML5出来以后,使用WebSocket通信就变得火热起来,基于WebSocket开发的手机APP和手机游戏也越来越多。我的一些开发APP的朋友,开始使用WebSocket通信,后来觉得通信不够安全,想要对通信进行加密,于是自然而然地就想从ws升级到wss。在升级的过程中,就会存在旧的ws客户端与新的wss客户端同时连接到同一个服务器的情况。所以...

Chrome浏览器 v68.0.3440.106 正式版怎么样?

谷歌浏览器Google Chrome稳定版迎来v68正式版第三个维护版本发布,详细版本号为v68.0.3440.106,上一个正式版v68.0.3440.84发布于8月1日,时隔8天Google又发布了新版Chrome浏览器,本次升级主要是更新了安全修复和稳定性改进及用户体验。chrome浏览器下载地址:http://chromecj.com/catego...

uni-app 知识点

---【uni-app】:   是一个使用vue。js开发所有前端应用的框架,开发者编写一套代码,可发布到ios,android,H5,以及各种小程序,   (微信/支付宝/百度/头条/QQ/钉钉)等多个平台 ---【环境搭建】:   1,安装APP开发版HBuilderX   2,安装微信开发者工具 ---【使用HBuilderX初始化项目】:   1,...

浏览器兼容性测试

❤参考文档:网址 定义:浏览器兼容性又叫网页或者网站的兼容性问题,是指不同的浏览器(内核)对同一段代码有不同的解析,造成页面显示不一样的情况 所以需要考虑到:内核,客户端屏幕尺寸&分辨率,操作系统,不同终端 1.什么时候需要做浏览器兼容性测试? 大型的,用户群体多的网站都需要做浏览器兼容性测试,需要测试主流的浏览器(除特定要求的浏览器以外)...

Delphi操作Excel大全

转自上帝的鱼--专栏 cdsn 个人收藏:Delphi 控制Excel(一) 使用动态创建的方法首先创建 Excel 对象,使用ComObj:var ExcelApp: Variant;ExcelApp := CreateOleObject( 'Excel.Application' );1) 显示当前窗口:ExcelApp.Visible := True;...

什么是系统封装

什么是系统封装   系统封装,说简单就是把系统制作成镜像的方法刻录到光盘,用在系统安装上面。系统封装,不同于系统的正常安装。最本质的区别在于 系统封装 是将一个完整的系统以拷贝的形式打包,然后用粘贴的形式安装在另外一个系统盘上,而正常安装则是通过 Setup程序进行安装。 举一个不太贴切的例子,你要铺草坪,你可以在那片土地上撒草籽等待草的长成,也可以直...