线程池阻塞队列之LinkedBlockingQueue

摘要:
LinkedBlockingQueue原理和数据结构LinkedBlocking queue继承自AbstractQueue,它本质上是一个FIFO队列。LinkedBlockingQueue实现了BlockingQueue接口,它支持多线程并发。LinkedBlockingQueue在实现“多个线程对竞争资源的互斥访问”时,对“插入”和“删除(删除)”操作使用不同的锁。LinkedBlockingQueue函数列表LinkedBlocking Queue源代码分析接下来,我们从创建、添加、删除和遍历的角度分析LinkedBlockngQueue。Head和last是“LinkedBlockingQueue”的第一个和最后一个节点。

LinkedBlockingQueue介绍

LinkedBlockingQueue是一个单向链表实现的阻塞队列。该队列按 FIFO排序元素,新元素插入到队列的尾部,并且队列获取操作会获得位于队列头部的元素。

此外,LinkedBlockingQueue可以指定队列的容量。如果不指定,默认容量大小等于Integer.MAX_VALUE。

LinkedBlockingQueue原理和数据结构

  1. LinkedBlockingQueue继承于AbstractQueue,它本质上是一个FIFO(先进先出)的队列。

  2. LinkedBlockingQueue实现了BlockingQueue接口,它支持多线程并发。当多线程竞争同一个资源时,某线程获取到该资源之后,其它线程需要阻塞等待。

  3. LinkedBlockingQueue是通过单链表实现的:

      1. head是链表的表头。取出数据时,都是从表头head处取出。

      2. last是链表的表尾。新增数据时,都是从表尾last处插入。

      3. count是链表的实际大小,即当前链表中包含的节点个数。

      4. capacity是列表的容量,它是在创建链表时指定的。

      5. putLock是插入锁,takeLock是取出锁;notEmpty是“非空条件”,notFull是“未满条件”。通过它们对链表进行并发控制。LinkedBlockingQueue在实现“多线程对竞争资源的互斥访问”时,对于“插入”和“取出(删除)”操作分别使用了不同的锁。对于插入操作,通过“插入锁putLock”进行同步;对于取出操作,通过“取出锁takeLock”进行同步。此外,插入锁putLock和“非满条件notFull”相关联,取出锁takeLock和“非空条件notEmpty”相关联。通过notFull和notEmpty更细腻的控制锁。

若某线程(线程A)要取出数据时,队列正好为空,则该线程会执行notEmpty.await()进行等待;当其它某个线程(线程B)向队列中插入了数据之后,会调用notEmpty.signal()唤醒“notEmpty上的等待线程”。此时,线程A会被唤醒从而得以继续运行。 此外,线程A在执行取操作前,会获取takeLock,在取操作执行完毕再释放takeLock。

若某线程(线程H)要插入数据时,队列已满,则该线程会它执行notFull.await()进行等待;当其它某个线程(线程I)取出数据之后,会调用notFull.signal()唤醒“notFull上的等待线程”。此时,线程H就会被唤醒从而得以继续运行。 此外,线程H在执行插入操作前,会获取putLock,在插入操作执行完毕才释放putLock。

LinkedBlockingQueue函数列表

线程池阻塞队列之LinkedBlockingQueue第1张

 线程池阻塞队列之LinkedBlockingQueue第2张

LinkedBlockingQueue源码分析

下面从LinkedBlockingQueue的创建,添加,删除,遍历这几个方面对它进行分析。

1. 创建

下面以LinkedBlockingQueue(int capacity)来进行说明。线程池阻塞队列之LinkedBlockingQueue第3张

说明:

  1. capacity是“LinkedBlockingQueue”的容量。

  1. head和last是“LinkedBlockingQueue”的首节点和尾节点。它们在LinkedBlockingQueue中的声明如下:

线程池阻塞队列之LinkedBlockingQueue第4张

链表的节点定义如下:

线程池阻塞队列之LinkedBlockingQueue第5张

 2. 添加

下面以offer(E e)为例,对LinkedBlockingQueue的添加方法进行说明。

public boolean offer(E e) {
    if (e == null) throw new NullPointerException();
    // 如果“队列已满”,则返回false,表示插入失败。
    final AtomicInteger count = this.count;
    if (count.get() == capacity)
        return false;
    int c = -1;
    // 新建“节点e”
    Node<E> node = new Node(e);
    final ReentrantLock putLock = this.putLock;
    // 获取“插入锁putLock”
    putLock.lock();
    try {
        // 再次对“队列是不是满”的进行判断。
        // 若“队列未满”,则插入节点。
        if (count.get() < capacity) {
            // 插入节点
            enqueue(node);
            // 将“当前节点数量”+1,并返回“原始的数量”
            c = count.getAndIncrement();
            // 如果在插入元素之后,队列仍然未满,则唤醒notFull上的等待线程。
            if (c + 1 < capacity)
                notFull.signal();
        }
    } finally {
        // 释放“插入锁putLock”
        putLock.unlock();
    }
    // 如果在插入节点前,队列为空;则插入节点后,唤醒notEmpty上的等待线程
    if (c == 0)
        signalNotEmpty();
    return c >= 0;
}

说明:offer()的作用很简单,就是将元素E添加到队列的末尾。 enqueue()的源码如下:

private void enqueue(Node<E> node) {
    // assert putLock.isHeldByCurrentThread();
    // assert last.next == null;
    last = last.next = node;
}

enqueue()的作用是将node添加到队列末尾,并设置node为新的尾节点! signalNotEmpty()的源码如下:

private void signalNotEmpty() {
    final ReentrantLock takeLock = this.takeLock;
    takeLock.lock();
    try {
        notEmpty.signal();
    } finally {
        takeLock.unlock();
    }
}

signalNotEmpty()的作用是唤醒notEmpty上的等待线程。

3. 取出

下面以take()为例,对LinkedBlockingQueue的取出方法进行说明。

线程池阻塞队列之LinkedBlockingQueue第6张

说明:take()的作用是取出并返回队列的头。若队列为空,则一直等待。 dequeue()的源码如下:

private E dequeue() {
    // assert takeLock.isHeldByCurrentThread();
    // assert head.item == null;
    Node<E> h = head;
    Node<E> first = h.next;
    h.next = h; // help GC
    head = first;
    E x = first.item;
    first.item = null;
    return x;
}

dequeue()的作用就是删除队列的头节点,并将表头指向“原头节点的下一个节点”。 signalNotFull()的源码如下:

private void signalNotFull() {
    final ReentrantLock putLock = this.putLock;
    putLock.lock();
    try {
        notFull.signal();
    } finally {
        putLock.unlock();
    }
}

signalNotFull()的作用就是唤醒notFull上的等待线程。

4. 遍历

下面对LinkedBlockingQueue的遍历方法进行说明。

public Iterator<E> iterator() {
  return new Itr();
}

iterator()实际上是返回一个Iter对象。 Itr类的定义如下:

private class Itr implements Iterator<E> {
    // 当前节点
    private Node<E> current;
    // 上一次返回的节点
    private Node<E> lastRet;
    // 当前节点对应的值
    private E currentElement;
​
    Itr() {
        // 同时获取“插入锁putLock” 和 “取出锁takeLock”
        fullyLock();
        try {
            // 设置“当前元素”为“队列表头的下一节点”,即为队列的第一个有效节点
            current = head.next;
            if (current != null)
                currentElement = current.item;
        } finally {
            // 释放“插入锁putLock” 和 “取出锁takeLock”
            fullyUnlock();
        }
    }
​
    // 返回“下一个节点是否为null”
    public boolean hasNext() {
        return current != null;
    }
​
    private Node<E> nextNode(Node<E> p) {
        for (;;) {
            Node<E> s = p.next;
            if (s == p)
                return head.next;
            if (s == null || s.item != null)
                return s;
            p = s;
        }
    }
​
    // 返回下一个节点
    public E next() {
        fullyLock();
        try {
            if (current == null)
                throw new NoSuchElementException();
            E x = currentElement;
            lastRet = current;
            current = nextNode(current);
            currentElement = (current == null) ? null : current.item;
            return x;
        } finally {
            fullyUnlock();
        }
    }
​
    // 删除下一个节点
    public void remove() {
        if (lastRet == null)
            throw new IllegalStateException();
        fullyLock();
        try {
            Node<E> node = lastRet;
            lastRet = null;
            for (Node<E> trail = head, p = trail.next;
                 p != null;
                 trail = p, p = p.next) {
                if (p == node) {
                    unlink(p, trail);
                    break;
                }
            }
        } finally {
            fullyUnlock();
        }
    }
}

LinkedBlockingQueue示例

import java.util.*;
import java.util.concurrent.*;

/*
 *   LinkedBlockingQueue是“线程安全”的队列,而LinkedList是非线程安全的。
 *
 *   下面是“多个线程同时操作并且遍历queue”的示例
 *   (01) 当queue是LinkedBlockingQueue对象时,程序能正常运行。
 *   (02) 当queue是LinkedList对象时,程序会产生ConcurrentModificationException异常。
 *
 */
public class LinkedBlockingQueueDemo1 {

    // TODO: queue是LinkedList对象时,程序会出错。
    //private static Queue<String> queue = new LinkedList<>();
    private static Queue<String> queue = new LinkedBlockingQueue<>();
    public static void main(String[] args) {
    
        // 同时启动两个线程对queue进行操作!
        new MyThread("ta").start();
        new MyThread("tb").start();
    }

    private static void printAll() {
        String value;
        Iterator iter = queue.iterator();
        while(iter.hasNext()) {
            value = (String)iter.next();
            System.out.print(value+", ");
        }
        System.out.println();
    }

    private static class MyThread extends Thread {
        MyThread(String name) {
            super(name);
        }
        @Override
        public void run() {
                int i = 0;
            while (i++ < 6) {
                // “线程名” + "-" + "序号"
                String val = Thread.currentThread().getName()+i;
                queue.add(val);
                // 通过“Iterator”遍历queue。
                printAll();
            }
        }
    }
}

其中一次运行结果:

tb1, ta1, 
tb1, ta1, ta2, 
tb1, ta1, ta2, ta3, 
tb1, ta1, ta2, ta3, ta4, 
tb1, ta1, tb1, ta2, ta1, ta3, ta2, ta4, ta3, ta5, 
ta4, tb1, ta5, ta1, ta6, 
ta2, tb1, ta3, ta1, ta4, ta2, ta5, ta3, ta6, ta4, tb2, 
ta5, ta6, tb2, 
tb1, ta1, ta2, ta3, ta4, ta5, ta6, tb2, tb3, 
tb1, ta1, ta2, ta3, ta4, ta5, ta6, tb2, tb3, tb4, 
tb1, ta1, ta2, ta3, ta4, ta5, ta6, tb2, tb3, tb4, tb5, 
tb1, ta1, ta2, ta3, ta4, ta5, ta6, tb2, tb3, tb4, tb5, tb6,

结果说明: 示例程序中,启动两个线程(线程ta和线程tb)分别对LinkedBlockingQueue进行操作。以线程ta而言,它会先获取“线程名”+“序号”,然后将该字符串添加到LinkedBlockingQueue中;接着,遍历并输出LinkedBlockingQueue中的全部元素。 线程tb的操作和线程ta一样,只不过线程tb的名字和线程ta的名字不同。 当queue是LinkedBlockingQueue对象时,程序能正常运行。如果将queue改为LinkedList时,程序会产生ConcurrentModificationException异常。

 

参考:https://github.com/wangzhiwubigdata/

免责声明:文章转载自《线程池阻塞队列之LinkedBlockingQueue》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇net use命令详解js之split()和join()的用法下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

Http协议、线程、线程池

Socket模拟服务端运行代码: 1:启动服务端监听的服务,并接受客户端的连接    1.1 创建Socket    Socket listenSocket=new Socket(AddressFamily.InterNetwork, SocketType.Stream,ProtocolType.Tcp);    1.2绑定端口和ip地址    IPA...

Qt的QWaitCondition(允许线程在一定条件下唤醒其他线程,这样对不间断上传可能比较适用)

  对生产者和消费者问题的另一个解决办法是使用QWaitCondition,它允许线程在一定条件下唤醒其他线程。其中wakeOne()函数在条件满足时随机唤醒一个等待线程,而wakeAll()函数则在条件满足时唤醒所有等待线程。   下面通过一个典型用例:生产者和消费者,来实现这二者之间的同步。整个工程就一个main.cpp,文件如下: #inclu...

Ogre2.0 全新功能打造新3D引擎

不知当初是在那看到,说是Ogre2.0浪费了一个版本号,当时也没多想,以为没多大更新,一直到现在想做一个编辑器时,忽然想到要看下最新版本的更新,不看不知道,一看吓一跳,所以说,网络上的话少信,你不认识别人,别人张嘴就来,对别人也没损失,还可以装B下,靠. 从现在Ogre2.1的代码来看,大约总结下,更新包含去掉过多的设计模式,SoA的数据结构(用于SIMD...

重新理解:ASP.NET 异步编程

相关博文: 异步编程 In .NET(回味无穷!!!) ASP.NET sync over async(异步中同步,什么鬼?) 本来这篇博文想探讨下异步中的异常操作,但自己在做异步测试的时候,又对 ASP.NET 异步有了新的认识,可以说自己之前对异步的理解还是有些问题,先列一下这篇博文的三个解惑点: async await 到底是什么鬼??? 异...

一个非常好用的生成目录树的npm包

经常看到别人的博客或者readme里有着非常整齐的目录树结构,原来这个不是手动写入的,找到了非常好用的一个node包 treer $ npm install -g treer $ treer --help -V, --version output the version number //版本号 -d, --directory...

nodejs中Buffer的创建和转换

  buffer是用来做什么?主要是用来处理二进制文件流和TCP流的文件缓存区。我们可以将二进制流和string,json,int进行转换,也可以进行复制,或者通过自带的函数进行判断buffer的一些状态。   创建Buffer对象(实例)     1.使用var buffer = new Buffer(size)创建对象,然后用buffer.fill(v...