TCP与UDP区别详解

摘要:
TCP与UDP区别详解计算机与其他网络设备相互通信,通信的双方在发送和接收数据包时必须基于相同的规则,我们将这种规则称为协议。TCP/IP协议簇是Internet的基础,其是一系列网络协议的总称,例如:TCP、UDP、IP、FTP、HTTP、ICMP、SMTP等都属于TCP/IP协议族内的协议。TCP协议的特点相比与UDP协议,TCP协议拥有面向连接、保证顺序、可靠传输、提供拥塞控制等特点。

TCP与UDP区别详解

计算机与其他网络设备相互通信,通信的双方在发送和接收数据包时必须基于相同的规则(例如:如何找到通信目标、如何发起通信、如何结束通信等规则都需要事先确定),我们将这种规则称为协议(Protocol)。

TCP/IP协议簇是 Internet 的基础,其是一系列网络协议的总称,例如:TCP、UDP、IP、FTP、HTTP、ICMP、SMTP等都属于TCP/IP协议族内的协议。
这些协议在计算机网络中自下而上被划分为四层:链路层、网络层、传输层和应用层。

  • 链路层:
    负责发送和接收ARP/RARP报文;
  • 网络层:
    该层包含IP协议、RIP协议(Routing Information Protocol),主要负责数据包在主机之间的传输
  • 传输层:
    主要负责定位处理数据的具体进程并转发数据(TCP协议提供可靠的数据流运输服务,UDP协议提供不可靠的数据服务);
  • 应用层
    负责向用户提供应用程序,比如HTTP、FTP、Telnet、DNS、SMTP等;

开放式系统互联通信参考模型

在网络体系结构中网络通信的建立必须是在通信双方的对等层进行,不能交错。
在整个数据传输过程中,数据在发送端经过各层时都要附加上相应层的协议头和协议尾(仅链路层需要封装协议尾)。

UDP 与 TCP 两种传输协议是 TCP/IP 协议簇的核心成员。

一、UDP

UDP(User Datagram Protocol)全称是用户数据电报协议,是一种无连接的协议,提供不可靠的用户数据报服务,1980 年发布的 RFC 768 定义了 UDP 协议。

UDP数据结构

UDP数据结构如下图所示:
UDP数据

UDP 协议头中只包含 4 个字段:源端口、目的端口、UDP长度、UDP校验码,其中每一个字段都占 16 位,即 2 字节,共8个字节。

  • 源端口
    发送方进程的端口号,接收方可以使用该字段(不一定准确)向发送方发送信息(范围0-65535);
  • 目的端口
    数据接收方的端口号(范围0-65535);
  • UDP长度
    协议头和数据报中数据长度的总和,表示整个数据报的大小;
  • UDP校验码
    使用 IP 首部、UDP 首部和数据报中的数据进行计算,接收方可以通过校验码验证数据的准确性,发现传输过程中出现的问题;

UDP首部数据举例

常见的 DNS 协议就可以使用 UDP 协议获取域名解析的结果:

0000   ff 7c 00 35 00 23 c2 6e

上述 UDP 首部中四个字段对应的值如下:

  • 源端口 0xff7c = 65404
  • 目的端口 0x0035 = 53
    由于 DNS 协议使用的端口是 53,所以目的端口就是 53
  • UDP长度 0x0023 = 35
  • UDP校验码 0xc26e

UDP在数据传输中的位置

这里我们可以将应用到应用之间的传输过程分成两个部分:
主机到主机的数据传输主机到应用的数据转发

  • UDP 协议首部的目的端口号用于定位处理数据的具体进程并转发数据;
  • UDP 协议底层的网络层IP协议(Internet Protocol)会负责数据包在主机之间的传输;

我们说 UDP 协议是传输层协议,但是真正在主机间完成数据传输工作的是 IP 协议UDP 协议只起到了定位具体进程的作用。

UDP数据传输的特点

  • 面向无连接
    UDP 不需要与 TCP一样在发送数据前进行三次握手建立连接,UDP想发数据就直接发送了;并且UDP只是数据报文的搬运工,不会对数据报文进行任何拆分和拼接操作。
  • 不可靠
    首先不可靠性体现在无连接上,通信都不需要建立连接,想发就发,这样的情况肯定不可靠的;并且收到什么数据就传递什么数据,也不会备份数据,发送数据也不会关心对方是否已经正确接收到数据;
    再者网络环境时好时坏,但是 UDP 因为没有拥塞控制,一直会以恒定的速度发送数据;即使网络条件不好,也不会对发送速率进行调整,这样实现的弊端就是在网络条件不好的情况下可能会导致丢包,但是优点也很明显,在某些实时性要求高的场景(比如直播、电话会议等)就需要使用 UDP 而不是 TCP;
  • 单播、多播、广播功能
    由于 UDP 不会建立连接,因此它可以给任何人传递数据,不止支持一对一的传输方式,同样支持一对多、多对多、多对一的方式;
  • UDP是面向报文的
    发送方的UDP对应用程序交下来的报文,在添加首部后就向下交付IP层(UDP对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界);
  • 头部开销小,传输数据高效
    UDP 的头部开销小,只有八字节,在传输数据报文时是比较高效的(在某些实时性要求高的场景,例如直播、电话会议、媒体传输等场景经常使用 UDP协议);

UDP数据传输

二、TCP

TCP(Transmission Control Protocol)协议全称是传输控制协议,是一种面向连接的、可靠的、基于字节流的传输层通信协议,由RFC 793定义。

当用户查看网页或电子邮件时,希望看到的内容完整且顺序正确,不丢失任何内容;当下载文件时,希望获得的是完整的文件,而不仅仅是文件的一部分;以上应用场景的传输层协议均可采用TCP协议。

TCP数据结构

TCP数据结构

  • 源端口、目标端口
    发送方进程的端口号,数据接收方的端口号(范围0-65535);
  • 序号
    主要是为了解决乱序问题(编好号才知道哪个先来,哪个后到);
  • 确认序号
    发出去的包应该有确认,这样能知道对方是否收到,如果没收到就应该重新发送,这个解决的是不丢包的问题;
  • 状态位
    SYN 是发起一个链接,ACK 是回复,RST 是重新连接,FIN 是结束连接(TCP 是面向连接的,因此需要双方维护连接的状态,这些状态位的包会引起双方的状态变更);
  • 窗口大小
    TCP 要做流量控制,需要通信双方各声明一个窗口,标识自己当前的处理能力;

TCP三次握手

TCP协议发送数据之前必须在通信的两端建立连接,建立连接的方法是TCP三次握手

TCP三次握手

  • 第一次握手
    客户端向服务端发送连接请求报文;请求发送后,客户端便进入 SYN-SENT 状态;
  • 第二次握手
    服务端收到连接请求报文后,如果同意连接,则会发送一个应答,发送完成后便进入 SYN-RECEIVED 状态;
  • 第三次握手
    当客户端收到连接同意的应答后,还要向服务端发送一个确认报文;客户端发完这个报文后便进入 ESTABLISHED 状态,服务端收到这个应答后也进入 ESTABLISHED 状态,此时连接建立成功。

为什么 TCP 建立连接需要三次握手,而不是两次?
TCP既要保证数据可靠传输,又要提高传输的效率,而用三次(客户端与服务端发送的报文都得到了响应,通信双方全都有来有回)恰恰满足了以上两方面的需求!

TCP三次握手

TCP四次挥手

TCP断开连接,也被称为四次挥手:

enter description here

  • 第一次挥手
    A:B,我不玩了
    客户端A服务端B发送连接释放请求;
  • 第二次挥手
    B:OK,A不玩了,知道了
    服务端B 收到连接释放请求后,发送 ACK 包,并进入 CLOSE_WAIT 状态;
    此时服务端B不再接收客户端A发送的数据,但服务端B 若此时还有没发完的数据会继续发送;
  • 第三次挥手
    B:A,我也不玩了,拜拜
    服务端 B 向 A 发送连接释放请求,然后 B 便进入 LAST-ACK 状态;
  • 第四次挥手
    A:OK,B不玩了,拜拜
    客户端A 收到释放请求后,向 服务端B 发送确认应答,此时 客户端A 进入 TIME-WAIT 状态;
    客户端A的 TIME-WAIT状态会持续 2MSL(最大段生存期,指报文段在网络中生存的时间,超时会被抛弃) 时间,若该时间段内没有 B 的重发请求,就进入 CLOSED 状态。当 B 收到确认应答后,也便进入 CLOSED 状态。

TCP协议的特点

相比与UDP协议,TCP协议拥有面向连接、保证顺序、可靠传输、提供拥塞控制等特点。

为了保证顺序性,每个TCP数据包都有一个序号ID,在建立连接的时候会商定起始 ID 是什么,然后按照 ID 一个个发送;
为了保证不丢包,需要对发送的包都要进行应答,这里应答不是一个一个来的,而是会应答某个之前的 ID,表示都收到了,这种模式成为累计应答
为了记录所有发送的包和接收的包,需要发送端接收端分别缓存这些记录。

TCP发送端的缓存里是按照数据包的 序号ID 一个个排列,根据处理的情况分成四个部分:

  • 发送并且确认的;
  • 发送尚未确认的;
  • 没有发送等待发送的;
  • 没有发送并且暂时不会发送的;

TCP发送端缓存结构

在 TCP 协议中接收端会给发送端报一个窗口大小Advertised Window,这个窗口大小等于上面的第二、第三部分加和,超过这个窗口接收端处理不过来,暂时不能继续发送;

上图TCP发送端缓存队列中:

  • 1、2、3 已发送并确认;
  • 4、5、6、7、8、9 都是发送了还没确认;
  • 10、11、12 是还没发出的;
  • 13、14、15 是接收方没有空间,不准备发的。

TCP接收端缓存内容类型如下:

  • 接收并且确认过的;
  • 还没接收,马上就能接收的;
  • 还没接收,也无法接收的;

TCP接收端缓存结构

上图TCP接收端缓存队列中:

  • 1、2、3、4、5 是已经完成 ACK ;
  • 6、7 是等待接收的,8、9 是已经接收还没有 ACK 的;
  • 10、11、12 、13、14、15 是暂时无法接收的;

TCP发送端、接收端当前的状态如下(依据以上两个图):

  • 1、2、3 没有问题,双方达成了一致;
  • 4、5 接收方响应 ACK 了,但是发送方尚未收到;
  • 6、7、8、9 肯定都发了,而且8、9 已经到了,但6、7 尚未收到,出现了乱序,缓存着暂无法 ACK;

根据这个例子可以知道顺序问题和丢包问题都有可能存在:

假设4的ACK响应发送端收到了,5的ACK丢了;6、7的数据包丢了,该怎么办?

  • 一种方法是超时重试,即对每一个发送了但是没有 ACK 的包设定一个定时器,超过了一定的事件就重新尝试;这个重试时间必须大于往返时间,但也不宜过长,否则超时时间变长,访问就变慢了;
    例如:过一段时间,5、6、7 的ACK都超时了,发送端就会重新发送;接收方发现 5 原来接收过 于是丢弃 5,6、7收到了发送 ACK;
  • 另一个快速重传的机制,即当接收方接收到一个序号大于期望的报文段时,就检测数据流之间的间隔,于是发送三个冗余的 ACK,客户端接收到之后,知道数据报丢失,于是重传丢失的报文段;
    例如:接收方发现 6、8、9 都接收了,但是 7 没来(7丢了),于是发送三个 6 的 ACK,要求下一个是 7;客户端接收到 3 个ACK,就会发现 7 丢了,马上重发。

参考

UDP—RFC768:
https://tools.ietf.org/html/rfc768

TCP—RFC973:
https://tools.ietf.org/html/rfc793

Stackoverflow: UDP checksum calculation, Sep 2017
https://stackoverflow.com/questions/1480580/udp-checksum-calculation

百度百科—UDP:
https://baike.baidu.com/item/UDP/571511?fr=aladdin

百度百科—TCP:
https://baike.baidu.com/item/TCP/33012?fr=aladdin

TCP 和 UDP 的区别:
https://blog.csdn.net/zhang6223284/article/details/81414149#comments

一文搞懂TCP与UDP的区别
https://www.cnblogs.com/fundebug/p/differences-of-tcp-and-udp.html

========== THE END ==========

wx_gzh.jpg

免责声明:文章转载自《TCP与UDP区别详解》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇VMware Workstation 的安装和使用Jenkins 部署 .NET MVC 项目下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

乐鑫esp8266的串口通讯驱动源文件,nonos和rtos版本

代码地址如下:http://www.demodashi.com/demo/13650.html 目录 一、前言; 二、esp8266的串口分布情况; 三、esp8266的串口通讯时候,应该怎么接线; 四、esp8266的NONOS非系统,串口编程; 五、esp8266的RTOS实时系统,串口编程; 一、前言; 我们已经学习esp8266的方方面面...

Linux下高并发socket最大连接数各种限制的调优

1、修改用户进程可打开文件数限制  在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,最高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统为每个TCP连接都要创建一个socket句柄,每个socket句柄同时也是一个文件句柄)。可使用ulimit命令查看系统允许当前用户进程打开的文件数限制: [s...

C#开发: 通信篇-TCP客户端

前言 关于网络通信: 每一台电脑都有自己的ip地址,每台电脑上的网络应用程序都有自己的通信端口, 张三的电脑(ip:192.168.1.110)上有一个网络应用程序A(通信端口5000), 李四的电脑(ip:192.168.1.220)上有一个网络应用程序B(通信端口8000), 张三给李四发消息,首先你要知道李四的ip地址,向指定的ip(李四ip:19...

关于鼠标移动事件晃动问题解决方案

做网页特效经常用到onmousemove事件,多见于显示当前目标的某些信息,但是经常会出现弹出框晃动的情况,原因基本都是鼠标脱离了当前元素跑到其他元素上了直接导致弹出层消失,这个过程不断重复就出现了晃动的情况,下面是本人写的一些代码示例,就出现了晃动的情况(例子中的图片随便找,小图尺寸170*170,大图尺寸400*400) HTML: <div i...

【系统软件工程师面试】2. 网络部分

网络部分 1、tcp/udp区别 1、基于连接与无连接; 2、流模式与数据报模式 ; 3、TCP保证数据正确性,UDP可能丢包; 4、TCP保证数据顺序,UDP不保证。 2、tcp 三次握手/ connect/ accept 关系, read返回0          3、select/ epoll ET/LT 在一个非阻塞的socket上调用read/w...

Raft和PBFT算法对比

转载原址:https://zhuanlan.zhihu.com/p/35847127 导语:区块链技术中,共识算法是其中核心的一个组成部分,本文将详细阐述私链的raft算法和联盟链的pbft算法,从算法的基本流程切入,分析两者的区别。 区块链技术中,共识算法是其中核心的一个组成部分。首先我们来思考一个问题:什么是共识?对于现实世界,共识就是一群人对一件或者...