单片机中的ROM,RAM和FLASH的作用

摘要:
ROM、RAM和FLASH的区别主要在于它们在单片机中的作用。但是,需要永久保存计算的瓦时。单片机将在固定时间或停电时将瓦时保存到FLASH中。数据段的数据应从ROM复制到RAM。在RAM中,不仅有数据段,还有堆栈段和通用工作寄存器组。

ROM,RAM和FLASH的区别,下面主要是具体到他们在单片机中的作用。

一、ROM,RAM和FLASH在单片中的作用
ROM——存储固化程序的(存放指令代码和一些固定数值,程序运行后不可改动)
c文件及h文件中所有代码、全局变量、局部变量、’const’限定符定义的常量数据、startup.asm文件中的代码(类似ARM中的bootloader或者X86中的BIOS,一些低端的单片机是没有这个的)通通都存储在ROM中。
RAM——程序运行中数据的随机存取(掉电后数据消失)
整个程序中,所用到的需要被改写的量,都存储在RAM中,“被改变的量”包括全局变量、局部变量、堆栈段。

FLASH——存储用户程序和需要永久保存的数据。
例如:现在家用的电子式电度表,它的内核是一款单片机,该单片机的程序就是存放在ROM里的。电度表在工作过程中,是要运算数据的,要采集电压和电流,并根据电压和电流计算出电度来。电压和电流时一个适时的数据,用户不关心,它只是用来计算电度用,计算完后该次采集的数据就用完了,然后再采集下一次,因此这些值就没必要永久存储,就把它放在RAM里边。然而计算完的电度,是需要永久保存的,单片机会定时或者在停电的瞬间将电度数存入到FLASH里。
二、ROM,RAM和FLASH在单片中的运作原理
1、程序经过编译、汇编、链接后,生成hex文件;
2、用专用的烧录软件,通过烧录器将hex文件烧录到ROM中
注:这个时候的ROM中,包含所有的程序内容:一行一行的程序代码、函数中用到的局部变量、头文件中所声明的全局变量,const声明的只读常量等,都被生成了二进制数据。
疑问:既然所有的数据在ROM中,那RAM中的数据从哪里来?什么时候CPU将数据加载到RAM中?会不会是在烧录的时候,已经将需要放在RAM中数据烧录到了RAM中?
答:
(1)ROM是只读存储器,CPU只能从里面读数据,而不能往里面写数据,掉电后数据依然保存在存储器中;RAM是随机存储器,CPU既可以从里面读出数据,又可以往里面写入数据,掉电后数据不保存,这是条永恒的真理,始终记挂在心。
(2)RAM中的数据不是在烧录的时候写入的,因为烧录完毕后,拔掉电源,当再给MCU上电后,CPU能正常执行动作,RAM中照样有数据,这就说明:RAM中的数据不是在烧录的时候写入的,同时也说明,在CPU运行时,RAM中已经写入了数据。
三、ROM中包含所有的程序内容,在MCU上电时,CPU开始从第1行代码处执行指令。这里所做的工作是为整个程序的顺利运行做好准备,或者说是对RAM的初始化(注:ROM是只读不写的),工作任务有几项:
(1)为全局变量分配地址空间---如果全局变量已赋初值,则将初始值从ROM中拷贝到RAM中,如果没有赋初值,则这个全局变量所对应的地址下的初值为0或者是不确定的。当然,如果已经指定了变量的地址空间,则直接定位到对应的地址就行,那么这里分配地址及定位地址的任务由“连接器”完成。
(2)设置堆栈段的长度及地址---用C语言开发的单片机程序里面,普遍都没有涉及到堆栈段长度的设置,但这不意味着不用设置。堆栈段主要是用来在中断处理时起“保存现场”及“现场还原”的作用,其重要性不言而喻。而这么重要的内容,也包含在了编译器预设的内容里面,确实省事,可并不一定省心。
(3)分配数据段data,常量段const,代码段code的起始地址——代码段与常量段的地址可以不管,它们都是固定在ROM里面的,无论它们怎么排列,都不会对程序产生影响。但是数据段的地址就必须得关心。数据段的数据时要从ROM拷贝到RAM中去的,而在RAM中,既有数据段data,也有堆栈段stack,还有通用的工作寄存器组。通常,工作寄存器组的地址是固定的,这就要求在绝对定址数据段时,不能使数据段覆盖所有的工作寄存器组的地址。必须引起严重关注。
注:这里所说的“第一行代码处”,并不一定是你自己写的程序代码,绝大部分都是编译器代劳的,或者是编译器自带的demo程序文件。因为,你自己写的程序(C语言程序)里面,并不包含这些内容。高级一点的单片机,这些内容,都是在startup的文件里面。
四、普通的flashMCU是在上电时或复位时,PC指针里面的存放的是“0000”,表示CPU从ROM的0000地址开始执行指令,在该地址处放一条跳转指令,使程序跳转到_main函数中,然后根据不同的指令,一条一条的执行,当中断发生时(中断数量也很有限,2~5个中断),按照系统分配的中断向量表地址,在中断向量里面,放置一条跳转到中断服务程序的指令,如此,整个程序就跑起来了。决定CPU这样做,是这种ROM结构所造成的。过程中中C语言编译器作了很多的工作,可仔细阅读编译器自带的help文件进行学习。

注:特别的,如下
1--I/O口寄存器:也是可以被改变的量,它被安排在一个特别的RAM地址,为系统所访问,而不能将其他变量定义在这些位置。
2--中断向量表:中断向量表是被固定在MCU内部的ROM地址中,不同的地址对应不同的中断。每次中断产生时,直接调用对应的中断服务子程序,将程序的入口地址放在中断向量表中。

 ROM的大小疑问:
对于flash类型的MCU,ROM空间的大小通常都是整字节的,即为ak*8bits。这很好理解,一眼就知道,ROM的空间为aK。但是,对于某些OTP类型的单片机,比如holtek或者sonix公司的单片机,经常看到数据手册上写的是“OTP progarming ROM  2k*15bit...”,可能会产生疑惑,这个“15bit”认为是1个字节有余,2个字节又不足,那这个ROM空间究竟是2k,多于2k,还是4k但是少了一点点呢?
答:这里要明确两个概念:一个是指令的位宽,另一个是指令的长度。指令的位宽是指一条指令所占的数据位的宽度;有些是8位位宽,有些是15位位宽。指令长度是指每条指令所占的存储空间,有1个字节,有2个字节的,也有3个字节甚至4个字节的指令。实事上也确实如此,当在反汇编或者汇编时,可以看到,复合指令的确是有简单的指令组合起来的,因此,OTP的ROM空间应该是2K,指令位宽为15位。一般的,当指令位宽不是8的倍数时,则说明该MCU的大部分指令长度是一个字节(注:该字节宽度为15位,不是8位),极少数为2个或多个字节,虽然其总的空间少,但是其能容下的空间数据并不少。

五、flash
关于flash,在单片机中需要外接,且需要cup具有SPI接口
例如:25PE80V6、25080BVSIG等

转载:https://blog.csdn.net/android_lover2014/article/details/88658883

免责声明:文章转载自《单片机中的ROM,RAM和FLASH的作用》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇ORA-22835 缓冲区对于 CLOB 到 CHAR 转换或 BLOB 到 RAW 转换而言太小Extjs 实现多行合并(rowspan)效果实现二下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

汇编效率优化:指令处理机制

大多数情况下,编写程序都不会使用汇编语言而是使用高级语言,原因大致有以下几点: 花费更多时间。高级语言的一行相当于汇编语言的几行、几十行甚至更多。 不够安全。比如说在进行函数调用时PUSH与POP必须成对出现,高级语言中的函数调用会自动为你执行PUSH与POP的操作,但是汇编语言中就必须由程序员自己保证PUSH与POP一致,否则会导致栈错乱,使得程序出现...

Flash、RAM、ROM的区别

一、 ROM(Read Only Memory) ROM(Read Only Memory),只读存储器。用来存储和保存数据。ROM数据不能随意更新,但是在任何时候都可以读取。即使是断电,ROM也能够保留数据。ROM也有很多种:PROM是可编程一次性(无法修改)的ROM;EPROM是紫外线可擦除可编程的ROM; EEPROM是电可擦除可编程的ROM,按字节...

STM32编程:动画深度演示栈机制、栈溢出

[导读] 从这篇文章开始,将会不定期更新关于嵌入式C语言编程相关的个人认为比较重要的知识点,或者踩过的坑。 为什么要深入理解栈?做C语言开发如果栈设置不合理或者使用不对,栈就会溢出,溢出就会遇到无法预测乱飞现象。所以对栈的深入理解是非常重要的。 啥是栈 栈是一种受限的数据结构模型,其数据总是只能在顶部追加,利用一个指针进行索引,顶端叫栈顶,相对的一端底部称...

ASM

在学习汇编之前,我们要介绍一下常用的函数调用约定,以便我们对于一些指令的理解。 函数调用约定 常见的函数调用约定:stdcall , cdecl, fastcall, thiscall, naked call 1, __cdecl(C调用约定.)C/C++ 缺省调用方式 1)压栈顺序: 函数参数从右到左 2)参数栈维护: 由调用函数把参数弹出栈,传送参数的...

AVR单片机教程——示波器

本文隶属于AVR单片机教程系列。   在用DAC做了一个稍大的项目之后,我们来拿ADC开开刀。在本讲中,我们将了解0.96寸OLED屏,移植著名的U8g2库到我们的开发板上,学习在屏幕上画直线的算法,编写一个示波器程序,使用EEPROM加入人性化功能,最后利用示波器观察555定时器、放大电路、波形变换电路的各种波形。 本讲所需的资料可以在这里下载:提取码6...

STM32通过ULN2003对步进电机进行控制

1 前言 本实验是基于STM32103芯片和ULN2003进行对步进电机的控制。 2 ULN2003的基本介绍 2.1 ULN2003的概述 ULN2003是高耐压、大电流复合晶体管阵列,由七个硅NPN 复合晶体管组成。一般采用DIP—16 或SOP—16 塑料封装。 ULN2003的主要特点: ULN2003 的每一对达林顿都串联一个2.7K 的基极电...