platform驱动架构初探

摘要:
平台总线是Linux2.6引入的一种虚拟总线。这种类型的总线没有相应的硬件结构。为了统一管理CPU(既不是USB总线也不是PCI总线),采用了平台虚拟总线。与字符设备不同,在平台架构中,整个驱动程序分为设备和驱动程序,这提高了系统的可移植性。在学习平台架构时,我们可以使用一点面向对象的思维,关注一些重要的结构,分别学习属性和行为,然后将它们连接起来。现在,让我们将注意力从内核启动转移到平台设备。

platform总线是Linux2.6引入的虚拟总线,这类总线没有对应的硬件结构。与之相反,USB总线和PCI总线在内核中是有对应的bus(USB-bus和PCI-bus)的。为了统一管理CPU这些既不属于USB又不属于PCI总线的外设资源,采用了platform虚拟总线。和字符设备不同,在platform架构中,整个驱动分为了device和driver两部分,提高了系统的可移植性。
在学习platform架构时,我们可以借助一点面向对象的思想,注意关注一些重要的结构体,将属性和行为分开学习,再联系起来。
本文所有代码基于linux3.9.5

platform总线驱动架构概览

可以分为如下三层:

  1. 设备struct platform_device : 资源分配
  2. 驱动struct platform_driver :初始化
  3. 总线struct platform_bus :device和driver的匹配,管理

linux内核启动流程和platform总线的注册

kernel在进入C语言阶段,会进入start_kernel函数(init/main.c),进行一些内存管理,调度。该函数的最后会执行rest_init();
下面是rest_init(init/main.c)源码

static noinline void __init_refok rest_init(void)
{
	int pid;

	rcu_scheduler_starting();
	/*
	 * We need to spawn init first so that it obtains pid 1, however
	 * the init task will end up wanting to create kthreads, which, if
	 * we schedule it before we create kthreadd, will OOPS.
	 */
	kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
	numa_default_policy();
	pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
	rcu_read_lock();
	kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
	rcu_read_unlock();
	complete(&kthreadd_done);

	/*
	 * The boot idle thread must execute schedule()
	 * at least once to get things moving:
	 */
	init_idle_bootup_task(current);
	schedule_preempt_disabled();
	/* Call into cpu_idle with preempt disabled */
	cpu_idle();
}

我们可以看到,该函数做了三件事:

  • 首先创建了一个线程执行kernel_init函数,该函数读取根文件系统下的init程序。这个操作完成了从内核态到用户态的转变。init进程作为所以用户态进程的父进程,将永远存在,PID是1
  • kthreadd是一个守护进程,PID是2
  • idle是空闲进程,cpu空闲时启动

我们进入kernel_init函数,在进入其中的kernel_init_freeable函数,继续进入do_basic_setup函数,这里我们就可以看到对驱动的初始化函数driver_init();
driver_init函数中,倒数第三个执行的函数platform_bus_init就是我们想找的platform总线的注册函数,位于drivers/base/platform.c

int __init platform_bus_init(void)
{
	int error;

	early_platform_cleanup();

	error = device_register(&platform_bus);
	if (error)
		return error;
	error =  bus_register(&platform_bus_type);
	if (error)
		device_unregister(&platform_bus);
	return error;
}

除了最后的platform_bus_init位于drivers/base,其余函数都位于init/main.c中。下面我们将注意力从内核启动转移到platform设备上。

platform架构总线

platform_bus是一种设备

struct device platform_bus = {
	.init_name	= "platform",
};

从上面的结构体我们可以看到,platform_bus是一个名字为“platform”的device。device结构体是内核中设备的基本结构体。其他是设备,例如USB,都和device有关。这些设备的结构体或包含device成员,或实现device的部分成员。C中没有面向对象的继承特性,所以通过这种方式,我们变相的实现了“继承”

platform_bus_type实现总线的管理

struct bus_type platform_bus_type = {
	.name		= "platform",
	.dev_attrs	= platform_dev_attrs,
	.match		= platform_match,
	.uevent		= platform_uevent,
	.pm		= &platform_dev_pm_ops,  //电源管理
};

我们关注下platform_match这个函数

static int platform_match(struct device *dev, struct device_driver *drv)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct platform_driver *pdrv = to_platform_driver(drv);

	/* Attempt an OF style match first */
	if (of_driver_match_device(dev, drv))
		return 1;

	/* Then try ACPI style match */
	if (acpi_driver_match_device(dev, drv))
		return 1;

	/* Then try to match against the id table */
	if (pdrv->id_table)
		return platform_match_id(pdrv->id_table, pdev) != NULL;

	/* fall-back to driver name match */
	return (strcmp(pdev->name, drv->name) == 0);
}

我们可以看到,这个函数的作用是将platform的device和driver名字相比较,相同则返回True表示匹配。

总线注册

上文linux启动过程中已经分析,不赘述

int __init platform_bus_init(void)
{
	int error;

	early_platform_cleanup();

	error = device_register(&platform_bus);
	if (error)
		return error;
	error =  bus_register(&platform_bus_type);
	if (error)
		device_unregister(&platform_bus);
	return error;
}

platform设备

platform_device结构体

这里我们要关注下platform_device结构体,位于include/linux/platform_device.h

struct platform_device {
	const char	* name;
	int		id;
	bool		id_auto;
	struct device	dev;
	u32		num_resources;
	struct resource	* resource;

	const struct platform_device_id	*id_entry;

	/* MFD cell pointer */
	struct mfd_cell *mfd_cell;

	/* arch specific additions */
	struct pdev_archdata	archdata;
};

platform_device 封装了device。

  • name:设备的名称
  • dev:真正有用的设备,通过contain_of,能找到整个platform_device
  • num_resources, resource: 系统使用的资源。Linux系统资源包括IO,寄存器,DMA,Bus,Memory等。

设备的注册和卸载

int platform_device_register(struct platform_device *pdev)
{
	device_initialize(&pdev->dev);
	arch_setup_pdev_archdata(pdev);
	return platform_device_add(pdev);
}

void platform_device_unregister(struct platform_device *pdev)
{
	platform_device_del(pdev);
	platform_device_put(pdev);
}

platform driver

platform_driver结构体

struct platform_driver {
	int (*probe)(struct platform_device *);
	int (*remove)(struct platform_device *);
	void (*shutdown)(struct platform_device *);
	int (*suspend)(struct platform_device *, pm_message_t state);
	int (*resume)(struct platform_device *);
	struct device_driver driver;
	const struct platform_device_id *id_table;
};

由device_driver结构体封装而来

struct device_driver {
	const char		*name;
	struct bus_type		*bus;

	struct module		*owner;
	const char		*mod_name;	/* used for built-in modules */

	bool suppress_bind_attrs;	/* disables bind/unbind via sysfs */

	const struct of_device_id	*of_match_table;
	const struct acpi_device_id	*acpi_match_table;

	int (*probe) (struct device *dev);
	int (*remove) (struct device *dev);
	void (*shutdown) (struct device *dev);
	int (*suspend) (struct device *dev, pm_message_t state);
	int (*resume) (struct device *dev);
	const struct attribute_group **groups;

	const struct dev_pm_ops *pm;

	struct driver_private *p;
};
  • probe:将driver绑定到device上调用该函数
  • remove:系统卸载设备的时候,将driver和device解绑
  • shutdown:关机时使设备静默
  • suspend:使设备进入睡眠模式
  • resume: 唤醒设备

免责声明:文章转载自《platform驱动架构初探》仅用于学习参考。如对内容有疑问,请及时联系本站处理。

上篇angular写的一个导航栏Python之地理信息可视化——matplot basemap工具箱下篇

宿迁高防,2C2G15M,22元/月;香港BGP,2C5G5M,25元/月 雨云优惠码:MjYwNzM=

相关文章

Web内容管理系统 Magnolia 介绍-挖掘优良的架构(1)

Magnolia简介:Magnolia CMS是一家瑞士公司自2003年起发布的一个基于Java的开源内容管理系统。它适合且已被使用在以下领域:电子商务(例如:COOP、Migros、Rossmann)、银行(例如:巴克莱银行、苏格兰银行、ING、American Express)、媒体娱乐(例如:阿拉伯电台、MBC、Foxtel)、政府(例如:美国NAV...

Dataset利用xsd读取xml,数值类型处理及验证

应该会有很多场景需要从xml文件读取数据,填充一个dataset。机器上没装数据库,个人觉得最好简便方法就是定义一个xml文件,模拟数据。默认,xml在datatable中的值都是字符串类型(Excel中输入数字,就知道是数值型)。如果需要dataset在调用readxml方法的时候,把是什么类型(比如xml中本意是整型,时间类型)自动转换成什么类型方便,...

把阿里巴巴的核心系统搬到云上,架构上的挑战与演进是什么?

作者丨张瓅玶(谷朴)阿里巴巴研究员 阿里巴巴核心系统作为全球最大规模、峰值性能要求最高的电商交易系统,在 2018 年之前只通过混合云弹性上云方式,为 双11 节约大量成本。直到 2019 年,阿里巴巴实现了核心交易系统全面上云并经历了 双11 峰值的考验。 在今天由极客邦科技举办的 ArchSummit 全球架构师峰会 2019 北京站上,阿里巴巴研究员...

基于Locust、Tsung的百万并发秒杀压测案例[转]

编者按:高可用架构分享及传播在架构领域具有典型意义的文章,本文是 3 月 27 日数人云运维负责人庞铮在北京“百万并发”线下活动中的分享记录。   不久前,数人云联合清华大学交叉信息研究院 OCP 实验室通过 10 台 OCP 服务器成功承载了百万并发 HTTP 请求。 此次实验设立的目标是在物理资源最小值的情况下完成 100 万并发处理,通过此次实验,...

微服务架构设计

微服务        软件架构是一个包含各种组织的系统组织,这些组件包括 Web服务器, 应用服务器, 数据库,存储, 通讯层), 它们彼此或和环境存在关系。系统架构的目标是解决利益相关者的关注点。 Conway’s law: Organizations which design systems[...] are constrained to pro...

为什么在做微服务设计的时候需要DDD?

记得之前在规划和设计微服务架构的时候,一个同事给我我一个至今依然记忆深刻的提示:你的设计蓝图里为什么没有看到DDD的影子呢? 随着对充血模型的领域认知的加深,我越来越觉得DDD的重要性,但是DDD内容繁多,是不是要深入去了解呢,我觉得不必入坑太深,个人浅见,它最核心的一点就是针对贫血模型的不足而设计,把原先传统的贫血模型里的业务逻辑拎出来,融入到Domai...